
NAVAL POSTGRADUATE
SCHOOL

Monterey, California

THESIS

SOFTWARE COMPONENTS FOR AIR DEFENSE
PLANNING

by

Arent Arntzen

September 1998

Thesis Advisor: Arnold H. Buss

Second Reader: Gordon H. Bradley

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 1998

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

SOFTWARE COMPONENTS FOR AIR DEFENSE PLANNING

5. FUNDING NUMBERS

 N0001498WR20001

6. AUTHOR(S)

7. Arent Arntzen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research, 110 Duncan Avenue,
Suite 100, Bolling AFB, DC 20332-0001

10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) Modern offensive weapon technologies such as stealth and precision guided munitions have rendered Integrated Air
Defense Systems increasingly vulnerable and ineffective. Stealth effectively reduces the performance of radar, but does not have the same impact on passive systems.
Sensors have been the most important and vulnerable part of air defense systems throughout the history of air warfare. Research into passive sensors has been
encouraging, but before passive sensor systems are produced, procured and deployed, analysis and planning must be conducted to quantify potential benefit and
determine feasible system configurations. As this type of analysis encompasses extremely complex system behavior, developing reusable and flexible simulation models
becomes important. This thesis develops a prototype software component architecture and component library for building simulation models for air defense analysis.
Sensor and airborne weapon simulation components are demonstrated and used in an exploratory analysis of the impact of a network of Infrared Search and Track
sensors. The analysis is based on a modern air defense system deployed in a realistic scenario. The component architecture and documentation methodology supports
reuse, and provides model configuration flexibility with potential for growth in successive stages of analysis.

14. SUBJECT TERMS

Air Defense Planning, Simulation, Software Components

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 298-102

v

Approved for public release; distribution is unlimited.

SOFTWARE COMPONENTS FOR AIR DEFENSE PLANNING

Arent Arntzen
Major, Royal Norwegian Air Force

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Author: __
Arent Arntzen

Approved by: __

Arnold H. Buss, Thesis Advisor

 __

Gordon H. Bradley, Second Reader

Richard E. Rosenthal, Chairman

Department of Operations Research

vi

vii

ABSTRACT

Modern offensive weapon technologies such as stealth and precision guided

munitions have rendered Integrated Air Defense Systems increasingly vulnerable and

ineffective. Stealth effectively reduces the performance of radar, but does not have the

same impact on passive systems. Sensors have been the most important and vulnerable

part of air defense systems throughout the history of air warfare. Research into passive

sensors has been encouraging, but before passive sensor systems are produced, procured

and deployed, analysis and planning must be conducted to quantify potential benefit and

determine feasible system configurations. As this type of analysis encompasses extremely

complex system behavior, developing reusable and flexible simulation models becomes

important. This thesis develops a prototype software component architecture and

component library for building simulation models for air defense analysis. Sensor and

airborne weapon simulation components are demonstrated and used in an exploratory

analysis of the impact of a network of Infrared Search and Track sensors. The analysis is

based on a modern air defense system deployed in a realistic scenario. The component

architecture and documentation methodology supports reuse, and provides model

configuration flexibility with potential for growth in successive stages of analysis.

viii

THESIS DISCLAIMER

The reader is cautioned that the computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

ix

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. THE ROLE OF SENSORS IN AIR DEFENSE ... 2
B. SIMULATION AND AIR DEFENSE PLANNING... 6
C. MODKIT - A JAVA COMPONENT ARCHITECTURE... 8

II. SOFTWARE COMPONENTS FOR SIMULATION .. 11

A. WHAT IS A SOFTWARE COMPONENT.. 13
B. FEATURES OF COMPONENTS ... 15
C. SUMMARY OF COMPONENT FEATURES ... 24

III. COMPONENT LIBRARY.. 25

A. MODELING MOTION... 25
B. MODELING SENSING.. 26
C. MODELING INTERACTION BETWEEN MOVERS AND SENSORS...................... 27
D. DEMONSTRATIONS .. 28

IV. IRST SYSTEMS AND AIR DEFENSE ENGAGEMENT OPPORTUNITY 33

A. NASAMS AND IRST... 34
B. SCENARIO AND SIMULATION .. 38
C. FIRST MODEL .. 41
D. EXTENDED MODEL .. 47
E. SIMULATION RESULTS .. 51
F. SUGGESTIONS FOR FURTHER SIMULATION WORK.. 53

V. DISCUSSION... 55

VI. CONCLUSIONS .. 59

LIST OF REFERENCES.. 61

APPENDIX A. JAVA CODE FOR ATOMIC DEMO... 63

APPENDIX B. JAVA CODE FOR COMPOSITE DEMO .. 65

APPENDIX C. JAVA CODE FOR FIRST SIMULATION MODEL....................................... 67

APPENDIX D. JAVA CODE FOR EXTENDED MODEL ... 71

APPENDIX E. COMPONENT LIBRARY FACT-SHEETS.. 75

INITIAL DISTRIBUTION LIST .. 87

x

xi

EXECUTIVE SUMMARY

 Modern offensive weapon technologies such as stealth and precision guided

munitions have rendered Integrated Air Defense Systems increasingly vulnerable and

ineffective. Since air defense is a purely reactive form of warfare, the application of

scientific principles to the design and deployment of air defense systems is a major factor

in achieving effectiveness. Today’s air defense planners face rapidly changing

technological developments, both for offensive weapons and for sensors. Understanding

the impact of technology on air defense operations must be done continually and at an

increasing pace. The combination of dwindling defense resources and rapid technological

developments makes the need for analysis more critical. Yet with current software

architectures, even the analysis activity may be prohibitively costly for small nations.

Stealth effectively reduces the performance of radar, but does not have the same

impact on passive systems. Sensors have been the most important and vulnerable part of

air defense systems throughout the history of air warfare. Research into passive sensors

has been encouraging, but before passive sensor systems are produced, procured and

deployed, analysis and planning must be conducted to quantify potential benefit and

determine feasible system configurations. As this type of analysis encompasses extremely

complex system behavior, developing reusable and flexible models becomes important.

Of all modeling tools available, system simulation is perhaps the only one capable

of capturing the behavior of Integrated Air Defense Systems. Unfortunately, building and

using a simulation model is an expensive, slow, and cumbersome activity. Since model

abstractions must ultimately be turned into computer code, the productivity of simulation

modeling depends heavily on effective software engineering and programming.

Reuse is the key to increasing effectiveness in simulation modeling. Component

Software is a technology that allows reuse of both model abstractions and

implementations. Furthermore, this technology makes the simulation model scalable,

allowing the analyst to start with a simple model and build towards higher complexity and

xii

fidelity. Building models using software components thus allows the analyst to develop a

model in a series of stepwise refinements. Progressing in small steps using components,

the analyst can derive the simplest possible model for the task at hand, minimizing the

effort that goes into parts of the model that ultimately would not be used, thus increasing

productivity.

This thesis uses Java, a new and powerful object-oriented programming

language, to develop a prototype software component architecture and component library

for building simulation models for air defense. Sensor and airborne weapon simulation

components are demonstrated and used in an exploratory analysis of the impact of a

network of Infrared Search and Track sensors. A practical scenario comprising a modern

medium range Surface to Air System (MSAM) is laid out as the basis for the simulation

models. The data gathered from the models indicate that IRST systems could be valuable

in the near future.

High tempo seems to be a dominating feature of theories of modern warfare. If

simulation models are to be used for planning purposes under such circumstances the cycle

time from one model to the next must be very short. Current methods fall far short of this

requirement. In addition to providing model configuration flexibility and scalability, the

component architecture supports reuse and makes data collection very simple. This thesis

shows how these combined features can reduce modeling cycle-time dramatically in the

context of air defense planning. Also, and of great interest to small nations, the high level

of abstraction and reusability achieved by the component architecture may allow the

functions of domain expert and simulation analyst to be combined in one individual.

xiii

ACKNOWLEDGEMENTS

The author would like to express his thanks to Dr Gordon Bradley and Dr Arnold

Buss. Without their bold and visionary move to introduce Java into the OR curriculum

this work would not have been possible. The Loosely Coupled Components working

group headed by the two professors provided a unique and stimulating environment. The

author benefited greatly from the experience of Dr Arnold Buss. His advice was always

constructive and based on deep insight.

xiv

1

I. INTRODUCTION

I want the future now
I want to hold it in my hand
I want the Promised Land

Peter Hammill “The Future Now”

In the 1991 Gulf War the United States Air Force demonstrated just how quickly

a modern Integrated Air Defense System (IADS) could be destroyed. Stealth and

precision guided munitions (PGM) were keys to the swift success. Offensive air power

seemed to have had the upper hand at this point. Having a clear picture of what the

enemy is doing is the alpha and omega in war. This is exactly the purpose for which

sensors in their many variations are collecting data. Without sensors one is left blind, just

as the Iraqi Air Force in Operation Desert Storm was. Stealth and PGM certainly

presents a challenge to air defense systems, but solutions to this challenge are under

development. Research into sensors for air defense cover technologies from bistatic

radar to space based systems and infrared search and track systems (IRST). For an

example, the U.S Marine Corps Science and Technology Program Plan for fiscal Year

1998 includes a research project titled “Advanced Targeting Sensor Technology

Program”, concerning the use of passive sensors in air defense. What is the effect of

stealth? What effect can IRST have when integrated into an air defense system? What

mix of sensors is best in current and future scenarios? This problem area is not entirely

new. Sensors have played an important role throughout the history of air defense.

2

A. THE ROLE OF SENSORS IN AIR DEFENSE

Although many factors contribute to the success of any military
operation, it has long been recognized that information is one of the most
important-information in many different forms and acquired on many
different time scales.

Technology for the United States Navy and Marine Corps 2000-
2035, Becoming a 21st-Century Force

Success can be dangerous. In 1991 the US Air Force put the Iraqi Air Defense

System out of action with stunning effectiveness. In 1940 Herrmann Göring volunteered

the Luftwaffe to defeat the British Fighter Command after the German successes in

France. Just before the Battle of Britain started he sent the following message to his

airmen: “From Reichsmarsschall Göring to all units of Luftflotte 2,3 and 5. Operation

Adler. Within a few days you will wipe the British Air Force from the sky, Heil Hitler”

(Terraine, 1988), only to get his nose severely bloodied. In fact, the Luftwaffe never

truly recovered from the losses it took in the Battle of Britain. Herrmann Göring and the

rest of the Luftwaffe high command held a strong belief in offensive air power. But they

were wrong. This attitude seems to have taken hold after Operation Desert Storm. For

an example, in his book “The Future of War” George Friedman claims that the United

States Armed Forces will be able to dominate warfare well into the next century through

the use of modern long-range precision weapons (Friedman, 1996). He may be wrong

too. Technology is often available to those who crave it. If Friedman is right, too many

players have too much to lose to remain indifferent. Technology in itself favors neither

the offensive nor the defensive in the long run (Creveld, 1989). In the Battle of Britain it

was precisely the use of a new type of sensor that wreaked havoc on established beliefs.

There is reason to believe that that may be the case again.

Air warfare is by now such a well-established and important part of warfare that it

is easy to forget just how young it is. Air warfare proper is only about 60 years old,

whereas land and sea warfare have traditions measured in hundreds or even thousands of

3

years. Theory about air warfare had already appeared in the beginning of this century,

just after the first flights of the Wright brothers. Notable theoreticians included the

American General William Mitchell, and the infamous Italian General Giulio Douhet.

Would it be possible to defend against fleets of bombers? Without experience, the

theories tended towards the extreme. For example, Douhet believed that nothing could

stop the bomber. He pushed his message so incessantly that the Italian high command

court-martialed him and put him in jail for a while to cool off. He was later released and

promoted to general when the course of events temporarily proved him to be correct.

Billy Mitchell, also quite outspoken, took on the American military leadership and was

court-martialed as well. The Second World War was to prove both men both right and

wrong.

The Battle of Britain was the first large scale battle waged by Air Forces only. A

definite success for the British Integrated Air Defense System (IADS), “Chain Home,”

was the first large scale integrated military system in which detailed flow of information

and central control was used to maximize the effectiveness and efficiency of the system

(Creveld, 1989). The success of Chain Home was largely due to the development of a

new sensor at the time, radar, favoring the defender. However, there were other

important features of the system. Chain Home’s cofounder and operational top leader,

Sir Hugh Dowding, had a good understanding of the use and integration of modern

technology into military systems. He developed and nurtured a good relationship with

the scientists working to build the system. Most importantly, the emerging technologies

were used to integrate multiple information sources, communication and weapons into a

tailor-made military system. The system allocated resources, both to meet the need of the

moment, but also with long range considerations in mind. It was, in short, the first large-

scale scientifically managed defense system. Optimistic at first, the Germans launched

“Adler Tag,” their code name for the main opening attack in the effort against Fighter

Command. After a protracted attrition battle, the Germans gave up and turned their

efforts eastwards towards the Soviet Union. Analysis has shown that the Germans failed

4

to understand the nature of the British air defense system, mostly judging it by the

technological status of the radar system. Although the radar employed by the British was

crude by German standards, they were only one part in a much more elaborate structure

(Terraine, 1986). When classified records were released after the war it was clear that

the British also utilized radio (a passive sensor) to listen and triangulate, which gave them

an early-warning about German attacks.

The different sensors were used to build up what today is called the “Recognized

Air Picture” (RAP), which is a “map” of all enemy and friendly activity in the airspace.

The RAP was important in more than one way. In addition to showing just how and

when its own resources should be allocated to defend critical resources, it gave Fighter

Command a possibility to rest and recuperate between attacks. Armed with an early

warning of German attacks, often hours in advance of the first German aircraft reaching

the English coast, the British could prepare their defenses for the onslaught. The

integration of multiple sources of information into a command and control system let Sir

Hugh Dowding manage his relatively meager resources nearly optimally. He was able to

inflict higher attrition on the Germans than they were willing to absorb. However, Chain

Home had its weak spots, most notably the radar stations. The Luftwaffe failed to attack

the weak and critical spots in Chain Home vigorously enough. When the Luftwaffe

turned to bombing cities, this gave the British IADS relief from the threat of being

blinded. Dowdings primary objective was to stay alive as a credible threat to the

Germans, always defending the most critical resources, but never using too much to be

left empty-handed the next day. He was forced to protect the infrastructure of his own

air defense system and at the same time protect vital industries. To this very day, an

enemy’s IADS ranks among the top priority centers of gravity, and in that system it is the

sensor system that has traditionally been the most critical and vulnerable part. In the

aftermath, historians have marveled over the incredible management of Chain Home,

emerging as it did victorious from a task that at first seemed impossible. Sir Hugh

Dowding was among the first military leaders to have an intuitive understanding for the

5

application of science to the management of military forces in war. He was perhaps one

of the first modern military leaders to apply Operations Research to his conduct of war,

even before the science had been firmly rooted as an aspect of modern war-fighting.

Clearly, Dowding fully understood the opening citation of this paper, and utilized it to its

full potential.

Since the Second World War air warfare and air defense has become tantamount

to warfighting. Most analysts will agree that air superiority is crucial to success in

modern war. There are many interesting case studies of air warfare following the Second

World War. The Arab-Israeli wars in 1967, 1973 and 1982 all include air warfare and air

defense as pivotal elements (Cooling 1994). In 1967 the Israelis blasted the Egyptian air

defense system out of commission in about one day of fighting, only to see it rebound

with terrible revenge in 1973 when the Egyptian forces had learned their lessons and dealt

the Israeli air force a serious blow. The Egyptians had to move their ground forces out

of their own air cover because of a strategic error committed by Syria. This gave the

Israeli Air Force time to rebound. In the Bekaa valley in 1982 the Israelis again showed

the world how quickly a Soviet-style air defense system could be decapitated when they

carried out a swift and enormously well-coordinated attack on the Syrian air defense

system. The American Armed Forces studied the campaign and surely got first-hand

knowledge about the precise tactics used by the Israeli Air Force. This knowledge would

be put to excellent use ten years later in Iraq.

From the Second World War through Operation Desert Storm, offense and

defense each had their day in the sun as new technologies were introduced, tactics

developed, used, and eventually successfully countered. Neither side had a clear, long

lasting upper hand. In Operation Desert Storm the coalition forces swiftly and effectively

paralyzed the Iraqi air defense system, giving the most recent round to the offense.

Although the Iraqi air defense system was modern by the standard of the day, and was

6

very large, its sensor system was almost solely based on active radar (Hallion, 1992). As

we have seen, this was the critical and vulnerable part of the system.

The Norwegian Advanced Surface-to-Air Missile System (NASAMS) is a newly

developed SAM system that meets many of the challenges created by the new offensive

technology. NASAMS is a unique system consisting of air defense components that are

put together in a network. A typical NASAMS unit consists of a three-dimensional

pencil-beam radar, a Fire Distribution Center (FDC), and three six-missile launchers. The

missile used is the AIM-120 AMRAAM, originally intended for use on interceptor

aircraft. The FDC is manufactured in Norway from commercial off-the-shelf

components. Up to four FDC’s can be networked to share targeting data and control any

launcher. This assemblage of air defense components achieves a combination of high

firepower and survivability. Still, NASAMS depends on active radar. The increasing

sophistication of precision guided munitions such as High-Speed Anti-Radiation Missiles

(HARM) is an identified Achilles heel of the system. Great interest has therefore been

placed on passive sensor system components.

B. SIMULATION AND AIR DEFENSE PLANNING

Just what will be the impact of new sensors, and how should they best be utilized?

This is among the most central questions that the air defense analyst must be asking. The

analysis must try to gain insight into the effect of different sensors and configurations in

relation to many different modern threats. The analyst faces a combination of uncertain

data and very complex system behavior. Of all modeling tools available, system

simulation is perhaps the only one capable of capturing the behavior of such systems.

Simulation modeling is the most widely used technique for analysis of military problems

for this very reason. Ideally military simulation modeling should be quick, cheap, and

yield precise answers. However, many current models are large, monolithic and hard to

understand (DMSO, 1995). They can seldom be used in a flexible manner to study

problems that are related to, but yet slightly different from what the model was intended

7

to do in the first place. Building and using a simulation model is an expensive, slow and

cumbersome activity. This leads to low productivity. We are concerned with the

efficiency of simulation modeling, meaning that combination of timeliness, correctness,

flexibility and affordability that support military decision-making. Unfortunately,

simulation cannot currently support high-tempo operational decision-making.

Reuse is the key to increasing effectiveness in simulation modeling. We consider

reuse on two levels. On one hand the abstractions that make up the model, and on the

other, the corresponding implementations. We shall have to reuse both abstractions and

implementations extensively to gain efficiency. Research has been conducted on Model

Management, a term that was coined in the mid 1970’s in the context of work on

decision support systems. The seminal work in the area of Model Management and

Model Integration was done by Geoffrion (1987), and a more recent overview of this

area is given by Krishnan (1997). Structured Modeling was developed as a

comprehensive response to perceived shortcomings of modeling systems in the 1980’s. It

is a systematic way of thinking about models and their implementations, based on the idea

that every model can be viewed as a collection of distinct elements, each of which has a

definition that is either primitive or based on the definition of other elements in the model.

There has been much theoretical work on the construction and use of models. Davis

(1993) treats the problem of variable resolution modeling and cross resolution model

connection. Blanning (1991) provides a volume of articles spanning from theories on

models and model integration to object-oriented approaches to model management.

Zeigler (1976) has written extensively on theories of modeling and simulation and related

issues. Taken together the above mentioned work puts up a very comprehensive and

interesting theoretical framework for modeling, especially for classifying and

understanding the different abstractions.

We must also be able to effectively implement our model abstractions. Since

programming is the task of mechanizing the model abstractions into code, we must be

8

concerned with software engineering and programming. To our knowledge the work on

Model Management and Model Integration has not produced any practical application or

methods that have gotten widespread use or attention. Whereas it is highly interesting

theoretically, we have chosen to approach the problem of simulation productivity and

efficiency in a more empirical fashion. Object-Oriented Software Engineering (OOSE) is

a field that concerns itself with effective software engineering, with special focus on reuse

(Jacobson, 1993). A central aspect of OOSE is the notion of a use case. Use cases are

specifications of courses of events that form the interaction between the system and its

users. However, the uncertainty and unpredictability involved in military planning

situations effectively preclude precise definitions of use cases before the situation occurs.

Consequently, it is highly desirable to be able to rapidly tailor the software to the

situation at hand. Component Software is a technology that addresses this problem. We

now go on to discuss the prototype software component architecture developed in this

thesis.

C. MODKIT - A JAVA COMPONENT ARCHITECTURE

The author has conducted a series of software experiments to gain insight into

software component technology for simulation modeling. The resulting component

architecture is implemented in the object-oriented programming language Java, and has

been named Modkit, short for Modeling Kit. From this point on Modkit will refer to

both the software architecture and the small library of components that has been

developed for the sake of the simulation models used in this thesis. It should be clear

from the context whether we are referring to the architecture or the components. Modkit

is the result of a series of software experiments, encompassing the use of several different

software patterns such as the Mediator, Composite, Decorator, Chain of Responsibility

and Command patterns (Gamma, 1997). The first set of experiments focused on basic

composition and event handling. The most important lesson from this experiment was

that events should be passed through globally standardized interfaces. The second

9

experiment concerned discrete-event simulation of queuing networks using components.

This experiment yielded the very important result that interactions between components

can most beneficially be handled by a third component, a mediator. Finally and most

importantly for the thesis, most of the work has gone into creating a software component

architecture for discrete-event simulation. A late yet very important lesson learned was

that access to component data must be possible through a simple interface. Modkit is

comparable to Sun Microsystem’s Java Beans in some respects. Java Beans are mostly

used for creating graphical user interfaces for programs, and this has unfortunately

limited its usefulness. Modkit has been specifically developed to be more general than

Java Beans. Finally Modkit has been developed in the context of building models for OR

purposes.

The rest of this thesis goes on to discuss what software components are, followed

by a tour through the important features of the Modkit software component architecture.

Following, this the Modkit component library is introduced and demonstrated. With this

background we move into a study of the impact of IRST systems on the effectiveness of

integrated air defense systems. After a discussion of the results of this modeling effort

we summarize the experiences and point to some of the very important benefits that have

accrued from the component approach.

10

11

II. SOFTWARE COMPONENTS FOR SIMULATION

One thing can be stated with certainty: components are for
composition. Nomen est omen. Composition enables prefabricated
“things” to be reused by rearranging them in ever new composites.
Beyond that trivial observation, much is unclear.

Clemens Szyperski

Can simulation modeling benefit from the component paradigm much as other

industries have? Most experts think the answer is “yes” for software development in

general (Jacobson, 1993), (Szyperski, 1997). Professor Niklaus Wirth, one of the

world’s leading computer scientist, and the father of Pascal, has recently developed

Component Pascal. In some areas, like building graphical user interfaces for programs,

software components like Java Beans are getting a solid foothold, and a market is being

created. The benefits of using loosely coupled software components for military planning

purposes are discussed by Bradley and Buss (1997). Finally, the philosophy underlying

Modkit closely resembles the architecture of connected components so successfully used

by the NASAMS system.

The key issue addressed by software component technology is productivity. The

productivity of simulation modeling is intimately linked to the productivity of software

development. Not using component technology has the following known drawbacks

(Szyperski, 1997)

• Requires reinvention of solutions

• Strict limits of growth and reusability

• Uneven quality and suboptimal solutions

The combination of diminishing military budgets and rapidly developing

technology demands effective and efficient analysis tools. Most current models cannot

12

provide what the air defense planner needs. The productivity of simulation modeling

need be increased dramatically. Software component technologies are perhaps the most

promising solution to this need.

Imagine the situation if simulation models could be assembled from a library of

generic components. This would be akin to how the electronics industry assemble

products from standardized components. Instead of inventing the same functionality

again and again, the engineer can look for components with the specific capability. Rather

than thinking about how to implement specific aspects of an entity in a model by

programming, the analyst could be free to think about the system he is trying to model:

what entities does it consist of, and how do the entities interact with each other to

produce the systems behavior? Furthermore, the analyst could use a simple model as a

baseline to explore in which direction further effort should be expended. The analyst

would in effect do modeling by stepwise refinement. This would be a natural way for an

analyst to work, and very desirable from an efficiency point of view. However, this

approach is not possible with existing software architectures. This is one of the main

reasons why simulation modeling is such a complex and time-consuming process. A

model consisting of loosely coupled interacting components can meet this challenge. To

support analysis for air defense planning, the software architecture used should facilitate

reuse, integration and extension of a growing library of model components.

Using component technologies has the following known benefits (Szyperski,

1997)

• Components improve in quality much faster than “hand-crafted” solutions

• Growth can become less limited

• The user can benefit from combined productivity and innovation of all

component vendors

13

• Large potential for reuse

• High quality in each component

Modkit is implemented in Java to support modular discrete-event simulation for

the air defense problem in this thesis. While a full-scale simulation analysis of the role of

modern sensors in air defense is not possible within the scope of a masters thesis, we can

nevertheless carry out the first exploratory stages of such work. The component

architecture should make it easy to grow the model to higher levels of fidelity and

complexity.

A. WHAT IS A SOFTWARE COMPONENT

Many different definitions of software components exist. Szyperski (1997)

provides a very good overview of the state of the art in software component technology.

The Software Engineering Institute, a U.S. Department of Defense sponsored research

center, has published a study on component-based software engineering where many of

the terms and concepts are explained and discussed (Brown, 1996). Jacobson (1993)

provides an insightful chapter on software components in his book on software

engineering. This thesis focuses on the specific context of air defense planning and

simulation. The experience from developing Modkit has led to the following list of

lessons learned:

• Components should be able to work stand alone as separate entities

• Components should communicate by passing messages (push-model)

• Components should be able to provide data to each other (pull-model)

• Components must be composable, meaning that several components are

connected together to form a system of components.

14

• It should be possible to compose components recursively

• The components must be loosely coupled.

• Connecting components should be simple

• Components must be of high quality

• Component documentation should be very good

It is interesting to note that all of these lessons learned with the exception of

recursive composition can be found in the literature on software components. This

indicates that our conclusions may be fairly context-independent.

Several analogies have been used to enhance the understanding of components.

To be sure, understanding something new by invoking a suitable analogy from a known

area is helpful, but some care is required. Some of the notions used include:

• Lego Blocks

• Integrated Circuits

• Stereo Equipment

• The Personal Computer

• Mechanical Engineering

These analogies may aid our intuition of what a software component may be, but

unfortunately, the analogies fails to capture some of the most important (and unique)

aspects of software components. First of all, we can tailor software components to a

large degree. Secondly, software components can be recursively nested. Thirdly,

software components can be instantiated any number of times.

15

We should think of a software component as a factory for components, rather

than a fixed product. Software components are unique. We cannot expect to be able to

produce software components from analogy to other fields. Creating software

components is a separate engineering activity (Szyperski, 1997). However, it is still

useful to invoke analogies, as we will, when discussing this new technology. We now

turn to the practical issues of component documentation.

B. FEATURES OF COMPONENTS

Software components should be documented for ease of use by both end user and

component programmers. Components must therefore be documented from several

viewpoints. We have provided the component fact-sheets used in this thesis as a

suggestion of how components could be documented. First of all, one should focus on

understandability (Jacobson, 1993). A component represents an abstraction, and we

should use any means available to convey this abstraction to the component user. We

have chosen to focus the fact-sheets on the component user, letting the first page of the

fact-sheet contain the most highly abstracted information. More detailed data, like

implementation code, comes towards the end. The method used is closely modeled on

the way the electronics industry provides fact-sheets for their components.

The fact-sheet also fully reflects the important attributes of a component. Hence

the following discussion also serves as an introduction to the important aspects of the

Modkit component architecture. The items are discussed roughly in the same order as

they can be found in the fact-sheets.

1. Focus - the Functional Aspects

The simulation expert using the components will be most interested in the

functional aspects of the component. What does the component model? This could

range from a generic component for modeling motion, to a more complex model of an

aircraft. Therefore, the first part of the fact-sheet should provide drawings and graphics

16

that give the user a good overview of what the component does and how it can be

connected to other components. Ideally the user should not have to go beyond this first

page to start using the component. No formalism should stand in the way in presenting

the first view of the component.

2. Syntactic and Semantic Aspects

When components are connected we must assure that they are compatible. That

is, they must share a common standard for what happens on the connections. In an

electronic setting this would correspond to electrical characteristics such as voltages and

frequencies. But this is only the very basic level; there must also be a standard for the

signals being passed such that the components can interact in a sensible fashion. The

situation is similar for software components. To be connectable the components have to

be “line” compatible with each other. This happens on the syntactical level, and is

effectuated in Modkit with Java interfaces. We can call this syntactic level of

standardization the “wiring level.” The next level of standardization is the so-called

semantic level. Here we must ensure that the components can “make sense” out of the

messages passed between them. There is no mechanism to formally enforce semantic

level standards, and we make no attempt at building this level of intelligence into the

library components. Rather, we let the component user be responsible for connecting

components such that the components interact sensibly. However, a section in the

component fact-sheet is dedicated to the semantic interface of each component. In

addition to the division into a syntactic and a semantic level we must also distinguish

between what the component provides to the outside world (outgoing) and what the

component can handle (incoming), both in terms of messages and data (Szyperski, 1997).

Table 1 summarizes what is provided in the documentation for component

interfaces. Note that the syntactic interfaces are, and should be, the same for all

components. The syntactic interfaces can thus be taken for granted for all components in

Modkit.

17

Syntactic(Interfaces) Semantic (Classes)
Outgoing ModPropertyProvider

ModEventSource
ModEvent

Generated Events
Provided properties

Incoming ModPropertyUser
ModEventListener
ModEvent

Handled Events
Used properties

Table 1. Component Interfaces

3. Syntactic Standards – Java Interfaces

The important aspects of components in Modkit are interrelated. But perhaps the

most important feature in order to produce a component standard is loose coupling. In

Modkit this is achieved by a combination of Java interfaces, late binding, and dispatcher

classes. Combined with Java’s introspection capability this achieves a high degree of

loose coupling. The syntactic level of standardization ensures that all components can

pass messages and data to each other in a simple and straightforward fashion. The Java

interface mechanism is perfect for this use. We ensure loose coupling by defining five

interfaces. We have defined three interfaces to handle events, and two interfaces to

handle properties (data). Each interface consists of very few abstract methods. Figure 1

uses the “Integrated Circuit” analogy to give an intuitive explanation of the interfaces.

18

Component

ModEvent
Source

Event
Generator

Event
Generator

Event
Generator

ModEvent
Listener

Event
Dispatcher

Event
Handler

Event
Handler

Event
Handler

Property
Dispatcher

Property

Property

Property

Outgoing
Events

Incoming
Events

Incoming
Properties

Outgoing
Properties

Property
Source

Property
User

Syntactic Interface Semantic Interface

Figure 1. Software Component

The syntactic interfaces on the left side of the dotted line correspond to

standardized connectors or pins that can be used to connect the component as indicated

on the drawing. The functional blocks on the right hand side correspond to the semantic

19

interfaces. All functional blocks in the picture of the component correspond one-to-one

to the Java source-code for the component interface definitions and implementations.

4. Semantic standards – Events and Properties

a. Messages as Events – the Push Mechanism

When a component transmits (or “fires”) an event it signals that something

potentially interesting to the outside world has happened inside the component. The

content of the message is defined in the event object transmitted. The event itself is an

instance of a class that implements the event interface. The event passing mechanism is a

“push” mechanism in the sense that the component fires the event, not caring how its

listeners react to that event (Szyperski, 1997). Modkit components are loosely coupled

with respect to message passing. In effect, an event is just pushed out to the rest of the

system, which can then decide how to respond. The component fact-sheet lists the class

names of the event classes, and a corresponding description of what condition has

triggered this event. Comparing this with how other components handle the same event,

the component user can decide how components are going to interact with respect to

events.

b. Data as Properties – The Pull Mechanism

Sending and receiving messages is a necessary condition for loose

coupling, but it is not sufficient in itself. By their very nature, components must limit

what they can do. In the design of a component it must be possible to assume that

services can be provided by other components. Said another way; sometimes data is

needed inside a component that must be found outside of the component. In keeping

with Java Beans terminology we call data “properties.” A property is a piece of data that

a component has, uses, or can provide.

20

The PropertySource and PropertyUser interface defines a unified way to treat

properties across all components. Whereas the Java Beans standard uses accessor

methods on a property-by-property basis, Modkit defines a generalized accessor method

for all properties. Therefore, Modkit components are loosely coupled both in a push and

a pull fashion. These are the necessary and sufficient mechanisms to function in a

collection of components forming a system. Properties are documented in a similar way

to events. The component user can find the name of the properties, their class names,

and a description of what the properties are in the component fact-sheets. Szyperski

(1997) has an excellent discussion on push/pull model of programming.

5. Composition

How can components be put together to provide a composite model or system?

Ultimately, building models should involve assembling ready-made software components

rather than writing individual lines of code. This activity is also programming, but at a

higher level of granularity (Szyperski, 1997). Composition is a much different method

than object-oriented software development. Traditional software development is a top

down process resembling a functional decomposition of a system. Object-oriented

development is both a top down and a bottom up process. However, assembling

components is a pure bottom up process. The latter method is fast and natural, but

requires the existence of a library of mutually compatible components. Given a set of

useful components, new systems can be created by composition. The development

process is mainly concerned with how components are grouped together and connected

to arrive at a new system. If a suitable component is lacking at any stage, the user should

be able to turn to a component programmer, or perhaps act the programmer, to produce

the desired component. In that case Modkit allows the component programmer to

benefit fully from all the object-oriented features of Java. Specifically, code in existing

components can be reused via implementation inheritance. There will be many different

ways of composing the components, and it will not in general be possible to anticipate all

21

possible compositions. Therefore, a small example of possible compositional schemes are

shown, and the rest left to the creativity and skills of the component user. The purpose

of the interfaces and standards defined in Modkit is to make composition possible with

minimum effort. This feature of Modkit brings us closer to truly reusable software

components than the object-oriented programming model alone. The syntactic interface

of a Modkit component remains constant under composition. That is, viewed from the

outside, the composite is syntactically just like any other atomic component. The

semantic interface of a composite is the union of the semantic interfaces of the

constituent components. This allows us to recursively nest components, and to handle

complexity by a divide and conquer method. Also, this feature makes it possible to

handle component interactions in a simple and standardized way. The demonstrations in

the next chapter will show this in practice. Since our component library is small we have

only very few examples to draw from, but we will provide examples of both atomic and

composite components in action.

It is interesting at this point to note that building models from components finds

an abstract parallel in Structured Modeling (SM). In SM atomic models are called

primitive. Modkit comes very close to implementing in practice the abstract view of a

model in SM. SM was developed specifically for modeling as practiced in OR/MS.

Geoffrion (1996) mentions in his article that “likely topics for further work include

discrete-event simulation.” Our starting point was discrete-event simulation for air

defense analysis. Models in SM are thought of as consisting of a collection of distinctive

elements, each of these elements being either primitive or composite, and the elements

are organized hierarchically as a rooted tree. The dependencies among the elements are

diagrammed as a directed acyclic graph. This so-called dependency graph can be

computationally active. We can build composites using Modkit just as in Structured

Modeling, but we are not limited to the tree structure. Components can be connected in

a fashion resembling entities in SM, but we have chosen our own name for the

22

computationally active arc, namely the mediator, and we have chosen to think of the

connection as a bi-directional interaction between entities. (Geoffrion, 1996)

6. Interaction

A good example of an interaction between components is a sensor detecting a

moving target. Although both entities take part in the interaction, it would defeat the

purpose of the component architecture to model the interaction in either of them. The

reason for this is simple. Doing so would require that every component included code for

interaction with all other components, and each component’s implementation would grow

enormously. Furthermore, existing components would have to be rewritten to account

for new additions in the component library. This is precisely the messy situation we want

to avoid. Interactions between model entities (components) are the dominant aspect of

air defense simulation models. This is just a special instance of a problem that occurs in

creating a software component, namely, where to draw the boundaries of the

functionality of the component. Quite clearly one cannot ask of a component that it “do

everything.” Certain assumptions about the availability of existing components must be

made. For example, the speakers in a stereo system assumes the existence of an

amplifier. The answer to this problem in Modkit is to use the mediator pattern to handle

component interactions. Each mediator is designed to take care of one and only one type

of interaction between one and only one pair of components. The mediator corresponds

to the computationally active arc in Structured Modeling, and it is also a recurring pattern

in software engineering (Gamma 1995, pp. 273). With respect to the latter it is

instrumental for reuse. The mediator pattern promotes loose coupling by keeping objects

from referring to each other explicitly, and lets us vary their interactions independently.

The mediator is syntactically just another component. This is extremely important since it

allows us to connect components with different mediators over the course of a simulation

run. As an example, a system including a sensor may detect a moving target. This

interaction is taken care of by a specific mediator (we will demonstrate this in the next

23

chapter). But some time later the system may fire a missile at the moving target. The

interaction between the moving target and the missile is of a different nature, and is

handled by another mediator. This is possible because the syntactic interface is constant

under composition. Compare this to Sun’s component standard, Java Beans, which uses

so-called adapters to glue together components with disparate syntactic interfaces. The

Java Beans approach effectively precludes the dynamic composition achieved with

Modkit. In Modkit, complex behavior and interactions are decomposed into small pieces

that are simple to handle individually. As a side benefit, the amount of computer code in

memory is limited to what is “going on” at all times, rather than carrying around “dead

code”. It should also be re-emphasized that the semantic interface of a composite is the

union of the semantic interfaces of its constituent components. This is important because

a given mediator can broker interaction between atomic or composite components so

long as it is compatible with at least one component in each composite in the interacting

pair. An example of this is the MovingSensor component in the demonstration in the

next chapter. The mediator listens to the events from both of its components and can

request data (properties), as it deems necessary. This ability is guaranteed by the

constancy of the syntactic interface standard. Connecting the mediator to components is

kept very simple by the same interfaces. No adapters are needed between the

components and the mediator. The mediator decides the result of the interaction, and

plays a key role for reuse by allowing components to become stable software entities.

Perhaps most importantly, the mediator makes it easy to scale up a model. The fact-

sheets contain a section for interaction that shows what mediators are compatible with

the component.

7. Source code

Finally the documentation provides the source code of the component. It may be

necessary to understand the internal workings of a component to use it properly.

Furthermore, a component is a factory for producing many components. We can make

24

instances of the component, each with different parameters. More importantly, the

component programmer/user can benefit fully from Java’s object orientation, since he can

write new components by extending and thereby also reusing the implementation of a

specific component. So we suggest that the full source code should be part of the

documentation.

C. SUMMARY OF COMPONENT FEATURES

We started this chapter by pointing out how efficiency in simulation modeling is

closely related to reuse. Both the abstract aspects and implementations of model

components should be reusable. We have introduced the important features of Modkit

components through a discussion of how the components are documented, and we have

shown how the fact-sheets support reuse of both abstractions and implementations.

Although the documentation methodology suggested here is purely practical, many of the

abstractions have much in common with those found in Structured Modeling. Loose

coupling is achieved in Modkit by using Java interfaces together with properties and

events. This assures component reuse by making composition possible. Component

code reuse is supported by Java’s implementation inheritance. Therefore we can reuse

the component implementation on two levels, first as a component in a composite,

secondly as a starting point for developing new components. Abstraction reuse is a

function of the semantic interface standard, and corresponding documentation in fact-

sheets. Components are interesting because they allow us to reuse all these important

parts going into a simulation model. In short, we have packaged both our abstractions

and implementations for easy reuse. This fact together with the scalability achieved by

the mediator mechanism should increase simulation modeling productivity by a very large

factor.

25

III. COMPONENT LIBRARY

To build a simulation from components we need a library of components. This

chapter introduces the three components that make up the baseline library from which the

air defense simulation is built. We give two demonstrations of how the components can

be used as a precursor to understanding how the air defense simulation is constructed.

Motion through space and sensing of moving targets are the most important

aspects in an air defense simulation. The two main components are for motion and

sensing, with the third being a mediator for the interaction between a sensor and a

moving target. The data sheets including the source code of the library components are

given in the Appendix E.

A. MODELING MOTION

 Spatial relationships and movement are fundamental to many military simulation

models, but do not directly relate to the Modkit component architecture. For that reason

a separate Java package has been devoted to vectors and the most used operations of

analytic geometry. Following good object-oriented design practice, this class is built on

an interface. Vectors can be of any length, that is, they can have any number of

coordinates. However, it has been found most beneficial to use a four dimensional vector

class named Coor4D. The RouteMover, Modkit’s component for movement, makes

extensive use of the Coor4D class and its operations. Loosely speaking, the

RouteMover “implements” the Moving semantic interface. (We remind the reader again

that there is no Java interface for this function, it exists only as part of our fact-sheet for

the component. The use of the word “implements” should not be confused with the

formal Java issue of implementing a syntactic interface.) It simulates moving from point

to point in three-dimensional space. Between waypoints movement occurs with constant

velocity. Among the properties of this component are the Route4D. The Route4D is a

stack of four-dimensional points. The RouteMover proceeds from point to point in this

26

stack, “popping” the next element as it arrives at a waypoint. The fourth coordinate in

the Route4D object is the time at which we want the mover to be at the location. When

the RouteMover arrives at a waypoint it fires two events, VelocityChangedEvent and

ArrivalAtLocationEvent. Any other component interested in the status of the

RouteMover can register as listeners and be notified whenever the RouteMover arrives at

a new location, or changes velocity. Also, the current position, velocity vector and speed

is available at all times as properties, since the RouteMover is a source of these

properties. It uses linear interpolation between its starting point and destination point to

calculate its current position. Current time is taken to be the time available from the

simulation time-master. When the RouteMover reaches its final destination it fires the

MoverStoppedEvent.

B. MODELING SENSING

We have chosen to model the sensing aspects with a variation of the so-called

cookie cutter sensor (CCS). Usually a CCS is a just a circular area. Targets are

considered detected once they are physically inside the area. Our component is similar,

but three-dimensional, a sphere. The CCS “implements” the Sensing interface, including

the incoming events VelocityChangedEvent, ArrivalAtLocationEvent,

MoverStoppedEvent and the NewSignatureEvent, and outgoing DetectionEvent and

UnDetectionEvent. If the CCS receives a NewSignatureEvent it checks the position of

the signature. If the target is inside of the detection volume it “detects” the target. It

signals this by firing a DetectionEvent. The CCS then calculates when the target can first

exit the detection-volume and schedules a check at that time in the future. It registers

itself as a listener with the target. Should the target change velocity the CCS will

recalculate the first possible exit-time. When the target exits the detection-volume the

CCS signals this by firing an UnDetectionEvent. Notice that the CCS does not list any

properties relating to its location or motion in space in its outgoing semantic interface,

since it has not been constructed to model motion internally. This is a practical example

27

of drawing the boundaries for a component’s functionality. It has been assumed that the

CCS can be connected to a component for motion through space, much as a radar system

is mounted on an aircraft. Should no such component be connected to the CCS, it just

reverts to a default user selectable static position. The CCS works in conjunction with

any mover, and does not care if its moving component behaves like a missile or a tank.

In the demonstration that follows later we will show composites of sensors and movers

moving through space and sensing each other. All we have to do to make a moving

sensor is to put a component for movement and a CCS in a container. If we later build a

specific component for moving, such as a surface-to-air missile, the CCS can be

connected to this future component, and we would have a composite behaving like a

surface-to-air missile with an internal sensor.

C. MODELING INTERACTION BETWEEN MOVERS AND SENSORS

Finally, we need a mediator to broker interaction between our CCS and movers.

The SensorMoverMediator (SSM) class is a component designed for this purpose. The

SSM is registered as a listener with two and only two components. One of the

components is considered to be the target, the other is taken to be the sensor. Both

components must adhere to the Moving semantic interface, and the sensing component

must adhere to the Sensing interface. The SSM requests the current location and velocity

vectors of the target and sensor and calculates when the target can first enter the

detection-volume of the sensor. The calculation is redone if any of the components fire a

VelocityChangedEvent before this time. When the SSM determines that the target is

entering the detection-volume it hands off the target’s signature to the CCS, and waits

for a DetectionEvent from the CCS regarding that target. The SSM then rests until the

CCS fires the UnDetectionEvent for the target, when it resumes business as before.

28

D. DEMONSTRATIONS

This demonstration shows two simple simulations. The first involves atomic

components; the second uses two composites. In the first demonstration a RouteMover

has been set up to go from location (10,0,0) to (-10,0,0). A CCS has been located at the

origin. The drawings have been annotated to show where and when detection and

“undetections” occur, and should be fairly self-explanatory. In the second example both

components are composites. Each composite consists of a RouteMover and a CCS. The

drawings have been annotated to show the events occurring. Components and

connections for the atomic demonstration are illustrated in Figure 2 in which lightning

bolts indicate that both the event and property connections have been established. Figure

3 shows the resulting simulation sequence.

Sensor
Mover

Mediator
Sensor Mover

Figure 2. Components and Connections for Atomic Demonstration

29

3)

2)

1)
Location=(10,0,0)

Velocity=(-1,0,0)

MaxRange=1

Location=(0,0,0)

Sensor Detects Target at range=1
Target Pos=(0,1,0)
Time=9.0

Sensor UnDetects Target at range=1
Target Pos=(0,-1,0)
Time=11.0

Figure 3. Atomic Demonstration

30

Figure 4 shows the composite components and their connections. Notice that

two mediators are needed since both composites move and sense. One mediator is

designed to consider one of its components as the moving target, and the other as a

sensor. The fact that one composite detects the other is quite independent of what the

other sensor is doing. In the composite demonstration a RouteMover and CCS has been

put into a container to form a moving sensor. The mediation between two RouteMovers

and a stand-alone RouteMover and CCS are identical. This is possible because the

syntactic interfaces are constant under composition, whereas the semantic interfaces are

the union of the individual interfaces. The mediator thus sees no difference between the

atomic and composite components from the outside.

Sensor
Mover

Mediator

Mover X

Sensor Y Mover Y

Sensor X

Sensor
Mover

Mediator

Figure 4. Components and Connections for Composite Demo

Figure 5 shows the simulation sequence for the composite example. In the

interest of space the illustration does not cover the undetection phase.

31

Y

X

Max Range=1

Velocity=(-1,0,0)

Max Range=2

Velocity=(0,-1,0)
Location=(0,10,0)

Location=(10,0,0)

X
Y

Y Detects X at
range=2
X Pos=(0,1.4,0)
Time=8.6

YX

X Detects Y at
range=1
Y Pos=(0,0.7,0)
Time=9.3

3)

2)

1)

Figure 5. Composite Demonstration

32

In this chapter we have introduced and demonstrated the Modkit component

library. Although consisting of only three components, moving, sensing and interactions

between entities that move and sense are recurring aspects of air defense modeling. In

the first demonstration we saw how two atomic components and one mediator operated

to mimic a static sensor detecting a moving target. In the second demonstration we

produced a moving sensor by connecting a mover to a sensor and putting the two

components into a container, much like a radar can be mounted on an aircraft. Also,

since any number of mediators can be connected between components, we were able to

let both composites mutually detect each other. We now go on to show how the Modkit

architecture and the small component library can be used to build a larger scale simulation

model.

33

IV. IRST SYSTEMS AND AIR DEFENSE ENGAGEMENT

OPPORTUNITY

Now the sirens have a still more fatal weapon than their song,
namely their silence. And though admittedly such a thing has never
happened, still it is conceivable that someone might possibly have escaped
from their singing, but from their silence certainly never.

Franz Kafka, The Silence of the Sirens

This chapter shows how the simulation components can be used in an exploratory

analysis of the feasibility of using networked IRST sensors. Two models are developed.

The first model gathers data on how the targets are tracked by the radar and IRST

sensors as a function of detection ranges for both sensor systems. The second model

extends the first model with components for simulating the flights of surface-to-air

missiles. All parameters used in this study are from open sources and must be considered

to be rough approximations. Furthermore, to making any but the most tentative

conclusions would require access to classified data. Stealth is a collective term for

reduction of signature and applies to all parts of the electromagnetic spectrum and sound

(Knight, 1989). Stealth is achieved using a combination of techniques such as Radar

Absorbing Materials (RAM) and specific airframe shaping. Stealth in the radar portion of

the electromagnetic spectrum has been very successful. IR emissions from engines,

exhaust, and aircraft surfaces warmed by skin friction are more difficult to reduce. To

what degree can IRST sensors compensate for a short detection-range due to low target

RCS? Precision Guided Munitions include cruise missiles and air delivered munitions

such as laser guided glide bombs and the new Joint Standoff Weapon. Modern precision

guided munitions such as Cruise Missiles and HARM have made fixed active sensors

(radar) extremely vulnerable. In the late 90’s there has been a trend towards providing

air defense systems with passive rather than an active air defense alerting capability. This

trend has been most notable in locale/mobile air defense units. However, nation-wide air

defense networks are now vulnerable, as Operation Desert Storm showed so vividly.

34

Passive electro-optical sensors have limited range, and cannot individually act as

substitutes for long range surveillance radar. What if the passive sensors were connected

in a network? Fusing IR and electromagnetic sensors may make the system less

susceptible to target countermeasures and destruction of one sensor by a preemptive

strike.

A. NASAMS AND IRST

NASAMS (Norwegian Advanced Surface-to-Air Missile System) is a modern

Ground Based Air Defense system developed jointly by Norwegian and American

industry. The system is now in operational use in Norway, and has proven its worth in

several live firing exercises in the United States. A typical NASAAMS battery consists of

• 4 ARCS (Acquisition Radar and Control Center)

• 1 FDC (Fire Distribution Center)

• LASR (Low Altitude Surveillance Radar)

• 3 NTAS (Norwegian Tracking Adjunct System)

• 9 LCHR (AMRAAM launchers)

Up to four ARCS can be networked together to share data. All FDC’s can

provide targeting data to any other FDC in the system. Figure 6 shows a picture of the

Low Altitude Surveillance Radar.

35

Figure 6. Low Altitude Surveillance Radar (LASR)

 Sensors that can provide target data in a suitable format can be connected into

the system. The FDC carries out all functions for airspace control and track

management. This includes track correlation and Jam Strobe Triangulation, target

identification, threat evaluation and weapon assignment. The FDC also contains the

Battery and Launcher communications equipment and interfaces to the radar control

computer. The AN/TPQ-36 radar is a phased-array pencil beam radar that can track up

to 60 targets simultaneously, with a maximum detection range of 75 km. However, the

range falls off to 40 km versus low RCR fighter sized target. Each FDC can control a

number of launchers, which can be positioned up to 25 km away from the FDC. The

launchers each hold 6 AIM-120 AMRAAM missiles. Initially these were unmodified, but

to increase the range of the system a new program, the AMRAAM Rocket Motor

Enhancement, is under way to significantly increase the weapon’s target engagement

range and altitude capabilities. Figure 7 shows a photo of the AMRAAM six-missile

launcher.

36

Figure 7. AMRAAM Launcher (LCHR)

Each FDC is also equipped with an IR sensor called the Norwegian Tracking

Adjunct System (NTAS). It is used for visual target identification and raid size

assessment in order to determine the exact number of attacking aircraft in a radar track

presentation. Passive search , tracking and engagement is also possible with the NTAS.

The NTAS makes it possible to fire AMRAAM’s totally silently without radar emission.

No performance data is available from open sources about the NTAS.

IRST systems are clearly an area of intense research, but performance data are

scant in open sources (Cullen, 1998). We have selected some typical systems as a

baseline for assumed performance. They are either in development or in the early phases

of operational testing or use. Table 2 summarizes some available performance data. The

37

source does not indicate exactly what is meant by maximum range. One can only

speculate that a target with a signature commensurate with the signature of a subsonic

sea-skimming missile will be detected at this range with some probability under given

(most likely ideal) atmospheric conditions.

SAGEM VAMPIR
(DIBV-1A)

Lockheed Martin
AADEOS Advanced
Air Defense Electro-
Optical Sensor

Hollandse
Signaalapparaten Spar
Aerospace SIRIUS

Range Fighter
(km)

10-18 NA 30

Range
Supersonic
Missile (km)

14-27 NA 35 (sea-skimmer)

Range
Subsonic
Missile (km)

9-16 NA 21 (sea-skimmer)

Number of
targets tracked

50 256 in track while
scan mode

NA

Spectral
Band(s) (µm)

3-5 and 8-12 3-5 and 8-12 3-5 and 8-12

Operational
Status

In operational use Demo model built and
delivered to USA in
1991

Pre-production model
scheduled for 1998/99

Table. 2 IRST Performance

As an example, for the Pilkington Optronics ADAD air defense sensor, Jane’s

states that “The manufacturer claims that it increases the chances of a successful kill by

400 per cent” (O’Leary, 1997). The sensors are all made to be integrated into systems

using active sensors. For an example the SIRIUS, “can be integrated with any combat

system, in close cooperation with any sensor system, ranging from simple track radar to

autonomous close in weapons systems up to active phased-array radar.” Clearly, the

military planner cannot take claims such as the one mentioned above on face value. We

now go on to build two simulation models to get an understanding for the required

performance parameters for IRST sensors.

38

B. SCENARIO AND SIMULATION

NASAMS is typically deployed in the defense of a single airbase. Oerland Main

Air Base located in central Norway was chosen as the basis of a notional scenario. This

airbase is located at the Atlantic coastline, west of the city of Trondheim. Rugged

terrain, fjords, and a very large number of small and large islands dominate the area. A

Cartesian coordinate system was superimposed on a line-drawing of the area. The

notional scenario includes the different NASAMS elements deployed to defend an airbase

located at (115,120,0). Figure 8 shows a drawing of the scenario and deployment of

NASAMS units. Some of the units somewhat offset from their true positions for clarity.

39

Figure 8. NASAMS Deployment

The deployment is roughly based on known practices. It is assumed that the

airbase will be attacked by cruise missiles (CM) with low radar cross section. All cruise

missiles approach from the west, but fly trough randomly chosen initial points before

reaching the target. The measures of effectiveness are approximated by calculations on

data collected from a random sample of attacking cruise missiles.

40

The IRST and LASR components are of the “cookie cutter” type. When a target

is inside the detection range the target is considered detected. Furthermore, all sensors

and other units in system are “on the network” and are assumed to exchange data

instantaneously. The influence of earth curvature ignored. NASAMS would usually be

connected into the NATO Air Defense Ground Environment (NADGE). In the model it

is assumed that the larger air defense network is unable to provide any early warning for

the targets of interest. Also, NASAMS would be connected to several short-range air

defense weapons. In the model only the effect of the AMRAAM launchers is considered.

Three measures of performance are used to quantify the effect of an IRST

network: mean warning time, minimum cumulative time in action volume, and the

number of successful missile flights. One of the most crucial elements in air defense

success is warning-time of an impending attack. The more warning-time the better. An

IADS at high levels of readiness consumes resources at a very prolific rate. High levels

of readiness cannot be maintained for very long periods of time. Warning time allows the

IADS to manage its resources by changing its states of readiness. The precise relation

between warning time and system effectiveness will vary from system to system, but, in

general it is assumed that system performance improves with increasing warning time.

One of the great benefits of the NASAM system is that engagement is not dependent on

target illumination for missile guidance. It suffices for the target to be tracked by one of

the networked sensors until the AMRAAM missile can turn on its internal radar. We can

define “Action Volume” as that part of the volume in which a target can both be tracked

by some sensor and is within range of a weapon system, in our case the AMRAAM

launchers. A target can be engaged only if it is simultaneously tracked and within range

of some launcher. The cumulative time that a specific target profile is within the action

volume, as measured from the target impact point, will be an indicator of the ability to

successfully engage that target. In the second model we measure the mean number of

successful missile flights. In this model the AMRAAM average speed is set to 410 m/s.

A speed of 250 m/s is used for the cruise missile for both models.

41

C. FIRST MODEL

Figure 9 illustrates how the components have been connected for the simulation

model. As before the lightning bolts in the figure indicate both property and event

connections between components. For clarity only one of the connections have been

shown between the components, for example, the tracking correlator is connected to

each LASR, but only one connection is shown.

42

LASR
IRST

Mediator

Tracking
Correlator

Engagement
Correlator

Mediator Mediator

Cruise
Missile

LCHR

Figure 9. Components and Connection for First Model

The cruise missile is set to move towards the target. On its way it may encounter

the different NASAMS elements and the IRST’s. The role of the mediator components is

to ensure correct interaction with the cruise missile and each of the NASAMS elements.

The tracking correlator component “listens” to each of the sensors (both LASR and

IRST) and determines when the cruise missile is tracked by at least one sensor. The

tracking correlator is itself an event source for tracking events. The functioning of the

engagement correlator is similar, but it is connected to the launchers to keep track when

43

the cruise missile is inside of one or more of the AMRAAM launch envelopes. The

simulation consists of gathering data on when the cruise missile is first detected, when it

is tracked, and when it is both tracked and within range of one or more of the AMRAAM

launchers. In Figure 10 average warning time is plotted against IRST and LASR

detection ranges.

 0

5

10

15

20

IRST RANGE

 0

5

10

15

20

LASR RANGE

 0
50

10
0

15
0

20
0

25
0

30
0

M
E

A
N

 W
A

R
N

IN
G

 T
IM

E

Figure 10. Mean Warning Time versus LASR/IRST Range

Cullen (1989) gives a detection range of about 40 km for NASAMS versus a so-

called low radar cross section fighter-sized aircraft. It is reasonable to expect this range

to fall by an order of magnitude versus a stealthy (low RCS) cruise missile (Knight, 1989,

pp. 154). According to the data on IRST systems typical detection ranges for a low

flying subsonic cruise missile would range from 10 to 20 km. If we assume that the

LASR detection range is in the area between 0 and 10 km it is apparent from the surface

plot that the network of IRST has a very positive effect on average warning time. On the

44

other hand, when the LASR detection range approaches the 15-20 km range the effect of

the IRST sensors diminishes. Figure 11 displays average warning time versus range for

the fixed LASR detection range of 6 km.

IRST RANGE

M
E

A
N

 W
A

R
N

IN
G

T
IM

E

0 5 10 15 20

10
0

15
0

20
0

25
0

LASR Detectionrange=6 km

Figure 11. Average Warning Time as Function of IRST Range

The average warning time goes from 75 seconds to 290 seconds as the IRST

range goes from 0 to 20 km. The relationship seems to be fairly linear. Exactly what

impact this increase would have is subject to system specific data on readiness states and

transitions that are not accessible. However, we can conclude that IRST’s seems to have

a very noticeable effect on average warning times for relevant LASR ranges, and for

IRST ranges within those claimed by the IRST manufacturers.

The reader may wonder why there is a sudden “loss” in range at IRST range 18

since the curve otherwise seems quite linear. It must be borne in mind that each

45

combination of LASR and IRST range is “covered” by a small sample of 100 cruise

missiles, and so the mean warning time is a random variable. As a selected example we

looked at the data for LASR range=6 and IRST range=18, and performed a bootstrap

with respect to the mean of the 100 values gathered from the simulation (Efron,1993).

The estimated distribution of the mean warning time for this range combination is shown

in Figure 12.

200 220 240 260 280

0.
0

0.
01

0.
02

0.
03

Value

D
en

si
ty

mean

Figure 12. Bootstrap Estimate of Distribution of Mean Warning Time

The observed value for the mean is 235.5, and the bootstrap yielded an estimated

95% BCA confidence interval for the mean warning time for this range combination to be

from 215.6 to 260.9. Using the Central Limit Theorem we find an estimated 95% CI to

be from 212.3 to 258.7. Thus this sudden “fall” in range is well within what we must

have to expect from chance alone given the relatively small sample size. Figure 13

displays the second MOE, minimum cumulative time in action volume.

46

 0

5

10

15

20

IRST RANGE

 0

5

10

15

20

LASR RANGE

 0
20

40
60

80
M

IN
 T

IM
E

 IN
 A

C
T

IO
N

V
O

LU
M

E

Figure 13. Minimum Cumulative time In Action Volume

NASAMS can engage a target if it is tracked (by at least one of the sensors in the

system) and inside one of the launcher ranges. Minimum cumulative time inside the

action volume is an indicator for the ability to engage the target. As we can see from the

plot the response is zero for all combinations of LASR and IRST ranges from 0 to 6 km,

when we suddenly start getting a response. What this means is that of the sample of 100

missiles for each range combination, at least one had a zero cumulative time in the action

volume.

47

D. EXTENDED MODEL

The second model is an extension of the first model that adds a component to

simulate surface-to-air missile flights. When a cruise missile is tracked and enters a

launcher’s max range a missile is flown out to intercept the cruise missile. The

parameters for the simulated AMRAAM are an average speed of 410 m/s and a max

flight time of 60 seconds. Experimentation showed that this combination of parameters

gives an approximate max range of 15 km versus a target with a speed of 250 m/s when

the missile is fired as the target has the launcher exactly on the beam. Also, this

estimated average speed is consistent with the missiles given max ballistic range of 22 km

under the assumption of a 60 seconds max flight time.

The only data collected in this model are the number of successful missile flights

per cruise missile attacking. Figure 14 shows the components and connections for the

second model. A component has been added to act as a fire distributor. This component

listens to the tracking and engagement correlators. If a cruise missile is tracked when it

enters a launch zone the fire distributor fires a simulated AMRAAM component at the

target. No missile is fired if tracking occurs after the cruise missile has entered a launch

zone.

48

LASR
IRST

Mediator

Tracking
Correlator

Engagement
Correlator

Mediator Mediator

Fire
Distributor

AMRAAM

Cruise
Missile

LCHR

Figure 14. Extended Model

49

Figure 15 shows a plot of mean number of successful missile flights versus IRST

and LASR ranges.

 0

5

10

15

20

IRST RANGE

 0

5

10

15

20

LASR RANGE

 0
1

2
3

4
M

E
A

N
 N

U
M

 O
F

 S
U

C
C

E
S

S
F

U
L

IN
T

E
R

C
E

P
T

S

Figure 15. Mean Number of Successful Missile Flights

The response is almost zero until the range reaches around 6 km. From this point

on we get an increasing number of successful missile flights. Notice that we would have

drawn a similar conclusion if we had used the minimum cumulative time in action volume

as our MOE. Figure 16 shows the minimum number of successful intercepts versus the

ranges.

50

 0

5

10

15

20

IRST RANGE

 0

5

10

15

20

LASR RANGE

 0
0.

5
1

1.
5

2
M

IN
 N

U
M

 O
F

 S
U

C
C

E
S

S
F

U
L

IN
T

E
R

C
E

P
T

S

Figure 16. Minimum Number of Successful Missile Flights

It is interesting to compare Figure 16 to Figure 13, the plot of minimum

cumulative time in action volume. As we can see from the plot, the minimum number of

successful intercepts jumps from 0 to 2 at around 12 km range for the IRST and LASR.

What this means for the ranges up to around 12 km is that there was at least one out of

100 missiles for which there was no successful missile flight. From Figure 13 we can see

that an IRST range of 10 to 15 km corresponds to a cumulative time in action volume

from 20 to 40 seconds. According to open sources NASAM needs a minimum of about

10 seconds from tracking commences until the first missile can be fired. To this we must

add the time it takes to establish a firm track on the target. From Figure 13 we can

observe that an IRST range of 12 km corresponds to approximately 20 seconds minimum

cumulative time in action volume.

51

E. SIMULATION RESULTS

A typical deployment of a NASAMS battery in the defense of an airbase located

on the Norwegian coastline was chosen as the basis for a simulation model to study the

effect of a network of IRST sensors. Since the study aims to get a rough order of

magnitude estimate of the potential impact of IRST, a typical deployment was assumed

to be representative. Target acquisition and tracking is fundamental to all air defense

systems. The first model therefore concentrates almost exclusively on these aspects of

the problem.

Performance parameters for IRST sensors and reduction of radar detection ranges

due to stealth was estimated using open sources. A network of 12 conceptual IRST

sensors was deployed. The exact number of sensors that can be used will be subject to

factors such as procurement and operating costs. Twelve was chosen as reasonable

number since at this level the sensors can be co-located with the different NASAM

components, requiring no new and expensive infrastructure. The maximum detection-

ranges given in Table 2 are likely to be too optimistic given that the simulation is based

on detection with probability 1 at max range.

Warning time was defined to be the time from first detection of an attacking

missile to its impact on the airbase. The first simulation model shows that the chosen

IRST network has a clear positive effect on average warning time. For example, a typical

detection range for a stealthy cruise missile could be in the range of 6 km. The average

warning time in the radar-only case is 75 seconds. With the addition of the IRST

network with an average detection range of 10 km this time was doubled. At an IRST

range of 15 km the average warning time is in the range of 250 seconds. Although we

lack detailed knowledge of the required transition times between readiness levels for

NASAMS, it is quite clear from the numbers involved that the effect of the IRST

network is significant. The major factor in this result is the choice of the airbase as the

only target. Since the bulk of the IRST sensors are located on the perimeter of the

52

airbase, even small IRST ranges will yield positive effects on the average warning time.

Both the Vampire and Sirius sensor systems (Table 2) have the required performance

level to yield good results with regard to this MOE.

 The second MOE, minimum time in action volume was also estimated with the

first model. This MOE indicates how much opportunity the NASAM system has to

engage an incoming target. Figure 14 shows that the response is zero up to an IRST

range of 6 km. This means that out of a random sample of 100 attack profiles, at least

one had a minimum cumulative time in action volume of zero, leaving NASAM without

any engagement opportunity. However, it was estimated that a minimum time of about

30 seconds should correspond to an engagement opportunity. In that case the IRST

range must be at least 10 to 15 km to compensate for the low radar detection range. This

takes us to about the maximum range for the Vampir, but the Sirius with its claimed 21

km maximum range would yield very good results.

In the extended model, components were added to simulate actual AMRAAM

firings and intercepts. If an attacking cruise missile was tracked when it entered a

launchers max range the intercept was simulated. Data were collected on the number of

successful intercepts. For LASR detection ranges of between 0 and 12 km there is a

jump from 0 to 2 at around 12 km IRST range. The conclusions drawn from this are the

same as those for the second MOE, minimum cumulative time in the action volume.

If we consider the simulation models to realistically capture the most important

factors determining NASAMS engagement capabilities in the given scenario, we must

conclude that the required IRST performance is at the outer edge of what the selected

IRST systems can provide. The oldest of the systems, the Vampir, with a detection-

range of 9-16 km is at the lower end of the desired range. On the other hand, the Sirius,

which promises to be at the pre-production stage in 1998/99, has the required

performance, perhaps even with a slight margin. Therefore, adding an IRST network to

53

NASAMS could become an operationally effective option to compensate for the lack of

performance versus low RCS targets in the near future.

F. SUGGESTIONS FOR FURTHER SIMULATION WORK

Precision guided munitions such as HARM has been around for quite some time.

Therefore, it is perhaps doubtful that the airbase will be the only target. Threatened by

such weapons, the LASR’s may be forced to shut down for shorter or longer periods to

change positions. In that case an IRST network would, of course, be of great interest. It

would benefit the analysis to simulate an operational pattern of movement for the

LASR’s. We would then be able to deduce what effect the IRST systems can have to

compensate for the total absence of one or more LASR’s at any one time. If this study

concluded positively for the IRST systems there would be a strong case to look at their

inclusion into the NASAM system. This addition to the simulation model should be as

easy to carry out as the move from the first to the extended model. All that is required is

to make a composite component consisting of an existing LASR component and an

existing RouteMover.

54

55

V. DISCUSSION

A brief look at history showed us that technology has had a major impact on the

efficiency of air defense operations. Since air defense is a purely reactive form of

warfare, the application of scientific principles to the design and deployment of air

defense systems is a major factor in achieving effectiveness. Today’s air defense planners

face rapidly changing technological developments, both for offensive weapons and for

sensors. Understanding the impact of technology on air defense operations must be done

continually and at an increasing pace. The combination of dwindling defense resources

and rapid technological developments makes the need for analysis more critical. Yet with

current software architectures, even the analysis activity may be prohibitively costly for

small nations. The planner needs access to tools that can be used for basic exploration,

analysis and planning. Simulation is the most used tool in that regard. Building

simulation models has traditionally been an expensive and difficult process, quite out of

reach for the individual planner or small workgroup. In most cases simulation models

must be programmed from scratch. A new object-oriented programming language called

Java was introduced in the mid 1990’s. Java is perhaps the first programming language

that allows even amateur programmers to produce truly useful and maintainable software.

Although Java has a software component standard called Java Beans, for the most part it

is used for building Graphical User Interfaces, a job that it does very nicely. However,

the requirements imposed by simulation are more general, and in this thesis a software

component standard was developed specifically as a baseline for simulation components.

A component library was constructed that was small but very useful.

A case study was carried out on the impact of IRST sensors on air defense using

simulation and the component library. We started with three simple components and

showed a demonstration of their basic use. Even though the components were simple,

they turned out to be good enough for practical analysis in a realistic scenario. The

components for simulating radar, IRST sensors and AMRAAM launchers were all easily

56

derived from a more basic component. Simulation components for a cruise missile and an

AMRAAM were similarly derived from a basic component for movement. In this we

benefited fully from Java’s object orientation, reusing the implementation of more basic

components.

The model used had one cruise missile, four LASR’s, nine LCHR’s and 12 IRST

sensors. The cruise missile interacted with each of those entities for a total of 25

interactions. Since separate mediators handle interactions, scaling the model up from 1 to

25 interactions (or any other number) was simply a question of connecting components.

Adding new components and interactions to an existing model did not require

modification of the existing model, a feature not available in any other software

architecture known to the author. Even if Java is the technology enabling components,

the scalability is an effect of the software component approach more than any features of

Java. The author used no more time and effort in building and running the models

demonstrated here than what would be available in a real life, non-academic situation.

Developing the Modkit software component architecture took the better part of a year.

However, this was a one-time effort, since Modkit has a high degree of reusability.

Progress in almost all fields of human endeavor, including simulation modeling,

can best be made in small steps. The modeling effort that started with a very simple

model could be run immediately and, as a result, initial insights could be used to make

further model design decisions, a very desirable feature in a situation characterized by

complexity and uncertainty. Existing software engineering schemes can handle

development of software for stable and known situations well, but require that models be

nearly finished before they can be exercised, precluding the feature of stepwise model

development offered by the component architecture.

 Collecting data from the model was very simple thanks to the use of events. We

only needed to add components that can listen to the events fired by the different

components in the model. In fact, the components in the model are completely ignorant

57

that data is being gathered. This saves much effort, since not one single line of code in

the simulation components must be rewritten to collect disparate or unanticipated data

from the model. The extended model was built from the first model by adding two

components. This simple addition gave us a much more elaborate model in which we

could study the actual engagement opportunities by carrying out intercepts. Whereas the

extended model was more computationally expensive, it did not yield much new

information. It may well be that the planner would chose to work with the first model. If

so, very little effort would have been expended deducing this fact. This contrasts very

favorably to starting with a complex model and shaving off parts that most likely will not

be useful. In short, it is possible to reduce wasted effort by reducing the size of the initial

model, since we could use the model for analytic purposes immediately. This is especially

critical in a situation where it is difficult to decide before the fact what the sensible

MOE’s should be.

High tempo seems to be a dominating feature of theories of modern warfare. If

simulation models are to be used for planning purposes under such circumstances the

cycle time from one model to the next must be very short. Current methods fall far short

of the requirements. We have shown how the flexibility and scalability of the Modkit

component architecture reduces modeling cycle-time dramatically in the context of air

defense planning. Modkit can best be thought of as an extension of the Java

programming language . Combined with the even higher level abstractions and

reusability achieved with the Modkit component architecture this allows the functions of

domain expert and simulation analyst to be combined in one individual.

58

59

VI. CONCLUSIONS

This research started as an effort to quantify the impact of passive sensors on the

effectiveness of integrated air defense systems. System simulation was found to be the

only available analysis technique. Realizing that the task was too large for the time and

resources available, a software component system was developed to provide flexibility

and growth potential to the required simulation model.

Literature research has shown that the main features of our components have

much in common with the feature of the Structured Modeling framework. We arrived at

our component system via an empirical method.

A practical scenario comprising a modern Medium Range Surface to Air System

(MSAM) was laid out as the basis for the simulation model. The impact of a network of

IRST sensors on warning time and engagement opportunities in the MSAM was

approximated for a set of IRST and active radar detection ranges. The gathered data

indicate that IRST systems could be valuable in the near future.

Military planners and analysts should be able to build a very broad range of

simulation models using a library of reusable components. This requires that a deeper

understanding of software component technology and standards be developed. We have

discussed how component software technology can have a major impact on the efficiency

of simulation modeling and pointed to research and literature showing the great interest

in this topic, both civilian and military.

Working with software components is different from traditional software

engineering and design, and the methods of documentation are different. We have given

examples on how software components may be documented, and we have pointed to how

this method of documentation also can serve as a suitable means of communication

between component users and component programmers.

60

One of the main features of a simulation is to imitate the behavior of entities and

their interaction. Interactions are a source of complexity. We have shown how to tackle

interaction complexity by a divide-and-conquer method called the mediator. In addition,

this method provides stability, reusability of components, and scalability of models.

In this thesis the feasibility of building a simulation model based on a loosely

coupled (software) component approach has been demonstrated in practice. The experts

agree that this approach has great promise, but also requires high component quality.

This applies to both the abstract aspects of the components and their implementation.

The required level of quality of components or implementation has certainly not been

reached in this thesis. Yet the small-scale success of the component approach

demonstrated here, together with the widespread and general success of component

technology indicates that great benefits can be reaped from applying the component

approach to real-life simulation models for air defense analysis.

61

LIST OF REFERENCES

Blanning, R. W., “Special Issue on Model Management Systems,” Decision Support

Systems 9, 1993.

Bradley, G.H., Buss A.H., An Architecture for Dynamic Planning Systems Using

Loosely Coupled Components, Proposal For Reimbursable Research, Naval Postgraduate

School Monterey, CA, 1997.

Brown, A.W., Component-Based Software Engineering, Selected Papers From The

Software Engineering Institute, IEEE Computer Society Press, Los Alamitos, CA, 1996.

Cooling, F. B., Case Studies in the Achievement of Air Superiority, U.S. Government

Printing Office, Washington, D.C., 1994

Cullen, T., Jane’s Land-Based Air Defense, Eleventh Edition, 1998-99.

Creveld, M., Technology and War, From 2000 BC to the Present, New York, Free Press,

1989.

Davis, P., An Introduction to Variable-Resolution Modeling and Cross-Resolution

Model Connection, RAND, Santa Monica, CA, 1993.

(DMSO) Defense Modeling and Simulation Office, Defense and Simulation Initiative,

Office of the Director, Defense and Engineering, Department of Defense, 1995.

 Efron, B., An Introduction to the Bootstrap, Chapman and Hall, 1993.

Geoffrion, A., “Structured Modeling,” Encyclopedia of Operations Research and

Management Science, pp. 652-655, Kluwer, Academic Press 1996.

Friedman, G., The Future of War, Power, Technology and American World Dominance

in the 21’st Century, Crown Publishers, New York, 1996.

62

Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software,

Addison-Wesley 1995.

Hallion, R., Storm over Iraq, Air Power and the Gulf War, Smithsonian Institution Press,

Washington and London, 1991.

Jacobson, I.,Object-Oriented Software Engineering, a Use Case Driven Approach,

Addison-Wesley, 1993.

Knight, M., Strategic Offensive Air Operations, Brassey’s UK, 1989.

Krishnan, R., “Model Management”, Encyclopedia of Operations Research and

Management Science, pp. 400-403, Kluwer, Academic Press 1996.

O’Leary, A.P., Jane’s Electro Optic System, Third Edition, 1997-98.

Szyperski, C.,Component Software, Beyond Object-Oriented Programming, ACM Press

New York, 1997.

National Research Council (U.S.). Naval Studies Board. Committee on Technology for

Future Naval Forces, Technology for the United States Navy and Marine Corps, 2000-

2035 : becoming a 21st-century force, Washington, D.C., National Academy Press,

1997.

Terraine, J., The Right of the Line, the Royal Air Force in the European War 1939-1945,

Hodder and Stoughton, 1988.

Zeigler, B. P., Theory of Modeling and Simulation, Wiley, New York, 1976.

63

APPENDIX A. JAVA CODE FOR ATOMIC DEMO

/**
* @author Arent Arntzen
* Test of Atomic interaction
* Started 5 Sep 98
*/

import modkit.*;
import modutil.spatial.*;
import modsim.*;
import simkit.*;

public class AtomicTest {

 public static void main(String[] args) {
 Coor3D[] xwpts=new Coor3D[] { new Coor3D(10.0,0,0),
 new Coor3D(0,0,0),
 new Coor3D(-10.0,0.0,0.0)};
 Route4D xRoute;
 xRoute=new Route4D(xwpts,1.0);
 RouteMover xMover=new RouteMover("xMover");
 xMover.setMaxSpeed(2.0);
 xMover.setRoute(xRoute);
 xMover.go();
 ModEventListener tbf=new TabbedFrameModEventListener();
 xMover.addModEventListener(tbf);
 BasicSensor xSensor=new BasicSensor("xSensor",true);
 xSensor.addModEventListener(tbf);
 xSensor.setMaxRange(1);

SensorMoverMediator SMM=new
SensorMoverMediator("SMM",xSensor,xMover);

 SMM.setMinTimeStep(0.01);
 Schedule.startSimulation();
 }
}

64

65

APPENDIX B. JAVA CODE FOR COMPOSITE DEMO

/**
* @author Arent Arntzen
* 5 Sep 98
* Test of composite interaction.
*/

import modkit.*;
import modsim.*;
import modutil.spatial.*;
import simkit.*;

public class CompositeTest {

 public static void main(String[] args) {
 Coor3D[] xwpts=new Coor3D[] { new Coor3D(10.0,0,0),
 new Coor3D(0,0,0),
 new Coor3D(-10.0,0.0,0.0)};
 Coor3D[] ywpts=new Coor3D[] { new Coor3D(0,10.0,0),
 new Coor3D(0,0,0),
 new Coor3D(0,-10.0,0)};
 Route4D xRoute=new Route4D(xwpts,1.0);
 Route4D yRoute=new Route4D(ywpts,1.0);;
 MovingSensor ms1=new MovingSensor("X");
 ms1.init(xRoute,2.0,1.0);
 MovingSensor ms2=new MovingSensor("Y");
 ms2.init(yRoute,2.0,2.0);
 ModEventListener tbf=new TabbedFrameModEventListener();
 ms1.addModEventListener(tbf);
 ms2.addModEventListener(tbf);

SensorMoverMediator xy=new
SensorMoverMediator("XYMediator",ms1,ms2);
SensorMoverMediator yx=new
SensorMoverMediator("YXMediator",ms2,ms1);

 xy.addModEventListener(tbf);
 yx.addModEventListener(tbf);
 yx.setMinTimeStep(0.01);
 xy.setMinTimeStep(0.01);
 Schedule.startSimulation();
 }

}

66

67

APPENDIX C. JAVA CODE FOR FIRST SIMULATION MODEL

/**
* @author Arent Arntzen
* Started 1 Aug 98
*/

package models.iads;

import modkit.*;
import modsim.*;
import modutil.spatial.*;
import simkit.*;
import java.text.DecimalFormat;

public class FirstModel {
 private static DecimalFormat df = new DecimalFormat("#.0");
 public static void flyMissile(int numMissiles,
 double IRSTrange,
 double LASRrange,
 double LCHRrange) {
/**
* Make a factfinder to collect statistics
*/
 FactFinder ff=new FactFinder();
/**
* Make some sensors of the IRST type
*/
 IRST[] irsts=IADSutils.makeIRSTarray(
 new String[] {"IRST-1","IRST-2","IRST-3","IRST-4","IRST-5",
 "IRST-6","IRST-7","IRST-8","IRST-9","IRST-10",
 "IRST-11","IRST-12"},
 IRSTrange,
 new Coor3D[] {new Coor3D(130,130,0),new Coor3D(110,125,0),
 new Coor3D(110,115,0),new Coor3D(85,125,0),
 new Coor3D(90,145,0),new Coor3D(85,100,0),
 new Coor3D(140,130,0),new Coor3D(140,150,0),
 new Coor3D(150,160,0),new Coor3D(20,120,0),
 new Coor3D(60,120,0),new Coor3D(20,155,0)});
/**
* Make the four LASR's
*/
 StaticCC[] lasrs=IADSutils.makeLASRarray(
 new String[] {"LASR-1-Orland","LASR-2-Valset","LASR-3-
Nord","LASR-4-Tarva"},
 LASRrange,
 new Coor3D[] {new Coor3D(110,125,0),new Coor3D(75,100,0),
 new Coor3D(145,155,0),new Coor3D(85,145,0)});

/**
* Make the LHCR's...
*/
 LCHR[] lchrs=IADSutils.makeLCHRarray(
 new String[] {"LCHR-1-OrlandOst","LCHR-2-OrlandNord",

68

 "LCHR-3-OrlandSyd","LCHR-4-Storfosna",
 "LCHR-5-Tarva","LCHR-6-Valset",
 "LCHR-7-Nord1","LCHR-8-Nord2",
 "LCHR-9-Nord3",},
 LCHRrange,
 new Coor3D[] {new Coor3D(130,130,0),new Coor3D(110,125,0),
 new Coor3D(110,115,0), new Coor3D(85,125,0),
 new Coor3D(90,145,0), new Coor3D(85,100,0),
 new Coor3D(140,135,0),new Coor3D(140,150,0),
 new Coor3D(150,160,0)});
/**
* Factfinder listen to all
*/
 for(int i=0;i<irsts.length;i++) {
 irsts[i].addModEventListener(ff);
 }

 for(int i=0;i<lasrs.length;i++) {
 lasrs[i].addModEventListener(ff);
 }

 for(int i=0;i<lchrs.length;i++) {
 lchrs[i].addModEventListener(ff);
 }

 RouteMover cm=new RouteMover("CruiseMissile");
 cm.setMaxSpeed(0.25);
/**
* Listen to the cruisemissile also
*/
 cm.addModEventListener(ff);

/**
* Make and connect the mediators for the LASR's
*/
 for(int i=0;i<lasrs.length;i++) {
 SensorMoverMediator cmVsLasr;
 cmVsLasr=new SensorMoverMediator("lasr-Vs-CM",lasrs[i],cm);
 cmVsLasr.setMinTimeStep(0.01);
 }

/**
* Make and connect the mediators for the LCHR's
*/
 for(int i=0;i<lchrs.length;i++) {
 SensorMoverMediator cmVsLchr;
 cmVsLchr=new LauncherMoverMediator("lchr-Vs-CM",lchrs[i],cm);
 cmVsLchr.setMinTimeStep(0.01);
 }

/**
* Make and connect the mediators for the IRST's
*/
 for(int i=0;i<irsts.length;i++) {
 SensorMoverMediator cmVsIrst;
 cmVsIrst=new SensorMoverMediator("IRST-Vs-CM",irsts[i],cm);

69

 cmVsIrst.setMinTimeStep(0.01);
 }

for(int i=0;i<numMissiles;i++) {
 ff.reset();
 Schedule.reset();
 Route4D r=IADSutils.randomRoute2(new Coor3D[] {new

 Coor3D(115,120,0)});
 cm.setRoute(r);
 cm.go();
 Schedule.startSimulation();
 System.out.println(df.format(IRSTrange)+"\t"+
 df.format(LASRrange)+"\t"+

df.format(LCHRrange)+"\t"+ff.toDataOnly());

 }
 }

 public static void main(String[] args) {

System.out.println("IRST"+"\t"+"LASR"+"\t"+"LCHR"+"\t"+"WT"+"\t"+
"TT"+"\t"+

 "LCT"+"\t"+"AVT"+"\n");
 for(int ir=0;ir <= 20;ir+=2) {
 for(int la=0; la<=20; la+=2) {
 flyMissile(100,ir,la,15.0);
 }
 }
 }
}

70

71

APPENDIX D. JAVA CODE FOR EXTENDED MODEL

/**
* @author Arent Arntzen
* Started 1 Aug 98
*/
package models.iads;
import modkit.*;
import modsim.*;
import modutil.spatial.*;
import simkit.*;
import simkit.data.*;
import java.text.DecimalFormat;

public class ExtendedModel {
 private static DecimalFormat df = new DecimalFormat("#.0");
 public static void simulate(int numMissiles,
 double IRSTrange,
 double LASRrange,
 double LCHRrange,
 double minTstep) {
 TrackCorrelator tc=new TrackCorrelator("TrackCorrelator");
 FireDistributor fd=new FireDistributor("FDC",tc,0.5,0.1,60.0);
 FuzeFunctionCounter ffc=new FuzeFunctionCounter("ffc");
 SimStopper sstop=new SimStopper("Stopper");
 RouteMover cm=new RouteMover("CruiseMissile");
 cm.setMaxSpeed(0.25);
 cm.addModEventListener(sstop);
 fd.addModEventListener(ffc);
 StaticCC[] lasrs=IADSutils.makeLASRarray(
 new String[] {"LASR-1-Orland","LASR-2-Valset","LASR-3-
Nord","LASR-4-Tarva"},
 LASRrange,
 new Coor3D[] {new Coor3D(110,125,0),new Coor3D(75,100,0),
 new Coor3D(145,155,0),new Coor3D(85,145,0)});
 LCHR[] lchrs=IADSutils.makeLCHRarray(
 new String[] {"LCHR-1-OrlandOst","LCHR-2-OrlandNord",
 "LCHR-3-OrlandSyd","LCHR-4-Storfosna",
 "LCHR-5-Tarva","LCHR-6-Valset",
 "LCHR-7-Nord1","LCHR-8-Nord2",
 "LCHR-9-Nord3",},
 LCHRrange,
 new Coor3D[] {new Coor3D(130,130,0),new Coor3D(110,125,0),
 new Coor3D(110,115,0), new Coor3D(85,125,0),
 new Coor3D(90,145,0), new Coor3D(85,100,0),
 new Coor3D(140,135,0),new Coor3D(140,150,0),
 new Coor3D(150,160,0)});
 IRST[] irsts=IADSutils.makeIRSTarray(

 new String[] {"IRST-1","IRST-2","IRST-3","IRST-4","IRST-5",
 "IRST-6","IRST-7","IRST-8","IRST-9","IRST-10",
 "IRST-11","IRST-12"},
 IRSTrange,
 new Coor3D[] {new Coor3D(130,130,0),new Coor3D(110,125,0),

72

 new Coor3D(110,115,0),new Coor3D(85,125,0),
 new Coor3D(90,145,0),new Coor3D(85,100,0),
 new Coor3D(140,130,0),new Coor3D(140,150,0),
 new Coor3D(150,160,0),new Coor3D(20,120,0),
 new Coor3D(60,120,0),new Coor3D(20,155,0)});

/**
* Make and connect the mediators for the LASR's
*/
 for(int i=0;i<lasrs.length;i++) {
 SensorMoverMediator cmVsLasr;
 cmVsLasr=new SensorMoverMediator("lasr-Vs-CM",lasrs[i],cm);
 cmVsLasr.setMinTimeStep(minTstep);
 }
/**
* Make and connect the mediators for the IRST's
*/ for(int i=0;i<irsts.length;i++) {
 SensorMoverMediator cmVsLasr;
 cmVsLasr=new SensorMoverMediator("irst-Vs-CM",irsts[i],cm);
 cmVsLasr.setMinTimeStep(minTstep);
 }
/**
* Make and connect the mediators for the LCHR's
*/
 for(int i=0;i<lchrs.length;i++) {
 SensorMoverMediator cmVsLchr;
 cmVsLchr=new LauncherMoverMediator("lchr-Vs-CM",lchrs[i],cm);
 cmVsLchr.setMinTimeStep(minTstep);
 }
 for(int i=0;i<lasrs.length;i++) {
 lasrs[i].addModEventListener(tc);
 }
 for(int i=0;i<lchrs.length;i++) {
 lchrs[i].addModEventListener(fd);
 }
 for(int i=0;i<irsts.length;i++) {
 irsts[i].addModEventListener(tc);
 }
 for(int i=0;i<numMissiles;i++) {
 ffc.reset();
 tc.reset();
 Schedule.reset();
 //use the four lasrs and the airbase as targets
 Route4D r=IADSutils.randomRoute2(new Coor3D[] {new
Coor3D(110,125,0});
 cm.setRoute(r);
 cm.go();
 Schedule.startSimulation();
 System.out.println(
IRSTrange+"\t"+LASRrange+"\t"+LCHRrange+"\t"+ ffc);
 }

 public static void main(String[] args) {
 System.out.println("IRST"+"\t"+"LASR"+"\t"+"LCHR"+"\t"+"FFC");
 for(int ir=0;ir <= 20;ir+=2) {
 for(int la=0; la<=20; la+=2) {

73

 simulate(100,ir,la,15.0,0.1);
 }}}}

75

APPENDIX E. COMPONENT LIBRARY FACT-SHEETS

This appendix provides fact-sheets for two of the components in the Modkit

component library used in this thesis. The two components are the BasicSensor,the

three-dimensional cookie-cutter sensor, and the RouteMover, the component forming the

basis for the simulated cruise-missile and surface-to-air missile.

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library..2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Professor Arnold H. Buss..5
Code OR/SB
Naval Postgraduate School
Monterey California 93943-5002

4. Professor Gordon H. Bradley ..1
Code OR/BZ
Naval Postgraduate School
Monterey California 93943-5002

5. Professor Thomas H. Hoivik..1
Code OR/LA
Naval Postgraduate School
Monterey California 93943-5002

6. Major Arent Arntzen ..4
Oerland Hovedflystasjon
7130 Brekstad
Norway

2

Name: CCSensor Category:i Component

1Composition
ii

Composite of Mover and CCSensor

Events

� VelocityChanged
� MoverStopped

Mover CCSensor

Properties

� CurrentVelocity
� CurrentLocation

Properties

� CurrentVelocity
� CurrentLocation
� TrackingList
� MaxRange

Events

� VelocityChanged
� MoverStopped
� Detecion
� UnDetection

Description:
The CC Sensor is handed a new signature from a mediator. If the
signature is within max range it is considered detected and the
CCSensor fires a detection event. Then it schedules an update of the
target, using the targets current position and velocity vector to
deduce when the target may become lost (exit the detection volume). If
the targets velocity vector changes before the check is performed, the
scheduled check is cancelled and a new one scheduled according to the
new velocity vector. The target can be any composite, but must contain
a component that can provide the current location and current velocity
vector of the target. The sensor itself does not model its own
position or movement in space. If the CCSensor is not connected to a
mover, then it will simply be a static sensor, with location as set in
the default location.

2 EventGraphiii

New
Signature

Detection
EventB

oo

Check
Geometry

UnDetection
EventB

oo

3

3iv

R
m

ax

Detection

UnDetection

Mulitple checks of
geometry and exit
timing

4

Interfaces

Incoming

Events Handeled
EventID EventClassv Action performed
NewSignature NewSignatureEvent Tests if detection possible, if so fires

detection event and schedules update of
geometry for undetection event

MoverStopped MoverStoppedEvent If target (mover) is tracked then
interrupts all future actions on this
target

VelocityChanged VelocityChangedEvent This triggers recalculation of geometry
since time to undetect have changed

Properties Required
Name Class Usage Default
CurrentLocation Coor4D To calculate distance to

target
Settable

CurrentVelocity Coor3d To calculate undetection
in future

(0,0,0)

MaxRange Double Targets withing this
range are detected

0

Outgoing
Events Generated
EventID EventClass On Condition
Detection
UnDetection

Data/Properties Provided
Name Class Default
MaxRange Double 0
TrackingList Vector Empty

Syntactic
Standardvi

5

Compatible Mediators
Name Mediates in compositevii

MoverSensorMediator Yes

Hints and Tips for Usage
Special considerations using this component

6

Construction

Connection

Java Doc

Java Source Code

/**
* @author Arent Arntzen
* @version 0.1
* Started 5 Jun 98
*/

package modsim;
import modkit.*;
import modutil.spatial.*;
import simkit.*;

public class BasicSensor extends BasicModSimComponent {
 protected Coor4D targetLocation;
 protected Coor4D sensorLocation;
 protected double maxRange;
 protected double rangeBuffer;
 protected double distToTarget;
 protected ModComponent trackedTarget;
 protected int maxTrackedTargets;
 protected double targetMaxSpeed;
 protected double sensorMaxSpeed;
 protected Coor3D sensorCurrentVelocity;
 protected Coor3D targetCurrentVelocity;
 protected double relativeSpeed;
 protected double minTimeStep;
 protected double detectionTime;
 protected double unDetectionTime;
 protected boolean inRange=false;

 public BasicSensor(boolean introspect) {
 super(introspect);
 if (introspect) {
 propertyDispatcher=new PropertyDispatcher(this);
 eventDispatcher=new EventDispatcher(this);
 }
 maxRange=0.0;
 rangeBuffer=0.01;
 }

 public BasicSensor(String name,
 boolean introspect) {

7

 this(introspect);
 setName(name);
 }

 public BasicSensor(String name) {
 this(true);
 setName(name);
 }

 public void addModPropertySource(ModPropertySource
modPropertySource) {
 super.addModPropertySource(modPropertySource);
 init();
 }

 public BasicSensor() {
 this(true);
 }

 public void setMaxRange(double mr) {
 maxRange=mr;
 }

 public double getMaxRange() {
 return maxRange;
 }

 public void setMaxRangeBuffer(double fract) {
 rangeBuffer=fract;
 }

 public int getMaxTrackedTargets() {
 return maxTrackedTargets;
 }

 public void setMaxTrackedTargets(int max) {
 maxTrackedTargets=max;
 }

 private void upDateSensorLocation() {
 sensorLocation=(Coor4D)getProperty("CurrentLocation",new
Coor4D(0,0,0,0));
 }

 private void upDateTargetLocation() {
 targetLocation=(Coor4D)
trackedTarget.getProperty("CurrentLocation",new Coor4D(0,0,0,0));
 }

 private void upDateTargetMaxSpeed() {
 targetMaxSpeed=((Double)trackedTarget.getProperty("MaxSpeed",new
Double(0))).doubleValue();
 }

 private void upDateRelativeSpeed() {

8

targetCurrentVelocity=((Coor3D)trackedTarget.getProperty("CurrentVeloci
ty",
 new Coor3D(0,0,0)));
 sensorCurrentVelocity=((Coor3D)getProperty("CurrentVelocity",new
Coor3D(0,0,0)));

relativeSpeed=sensorCurrentVelocity.sub(targetCurrentVelocity).norm();
 }

 public void doCheckGeometry() {
 upDateTargetLocation();
 upDateSensorLocation();
 distToTarget=sensorLocation.distTo(targetLocation);
 if (distToTarget > getMaxRange()) {
 inRange=false;
 generateUnDetectionEvent();
 }
double timeToNextCheck=(getMaxRange()-
distToTarget)/(targetMaxSpeed+sensorMaxSpeed);

minTimeStep=(getMaxRange()*rangeBuffer)/(targetMaxSpeed+sensorMaxSpeed)
;
 if (timeToNextCheck < minTimeStep) {
 timeToNextCheck=minTimeStep;
 }
 if (inRange) {
 waitDelay("doCheckGeometry",timeToNextCheck);
 }
 }

 public void handleNewSignatureEvent(ModEvent e) {
 NewSignatureEvent nse=(NewSignatureEvent) e;
 ModComponent tgt=(ModComponent) nse.getSignature();
 targetLocation=(Coor4D) nse.getLocation();
 upDateSensorLocation();
 distToTarget=sensorLocation.distTo(targetLocation);
 if (distToTarget <= getMaxRange()) {
 inRange=true;
 trackedTarget=tgt;
 upDateTargetMaxSpeed();
 generateDetectionEvent();
 }
 }

 public void generateDetectionEvent() {
 detectionTime=Schedule.simTime();
 ModEvent e=new
DetectionEvent(this,trackedTarget,targetLocation,sensorLocation);
 notifyListeners(e);
 waitDelay("doCheckGeometry",0.0);
 }

 public void generateUnDetectionEvent() {
 unDetectionTime=Schedule.simTime();
 inRange=false;

9

 interruptAll();
 ModEvent e=new
UnDetectionEvent(this,trackedTarget,targetLocation,sensorLocation,
 unDetectionTime-detectionTime);
 notifyListeners(e);
 }

 public void handleMoverStoppedEvent(ModEvent e) {
 interruptAll();
 }
}

10

Name: RouteMover Category:viii Component

Description:ix

The mover moves from waypoint to waypoint with constant velocity between waypoints.
Waypoints and velocity are 3 dimensional.Locations are 4 dimensional with time as the
forth coordinate. Upon arrival at a waypoint it fires a VelocityChanged event. At its
final destination it fires a MoverStopped event. CurrentLocation and Velocity is always
available by using the getProperty method. Since motion is assumed to be linear
translation between waypoints, location at any time is calculated by using linear
interpolation between points.

4EventGraph
xxi

Arrival
At WP

Velocity
Changed

Mover
Stopped

5Composition
xii

Composite of Mover and CCSensor

Events

� VelocityChanged
� MoverStopped

Mover CCSensor

Properties

� CurrentVelocity
� CurrentLocation

Properties

� CurrentVelocity
� CurrentLocation
� TrackingList
� MaxRange

Events

� VelocityChanged
� MoverStopped
� Detecion
� UnDetection

WP0

WP1

WP3

WP2

VelocityChanged

Current Velocity
and Location
always available

11

Interfaces

Incoming

Events Handeled
EventID EventClassxiii Action performed
KillRemove KillRemoveEvent Deregisters with all listeners

Marks itself for disposal

Properties Required
Name Class Usage
Route Route4D Initialize to this route

Outgoing
Events Generated
EventID EventClass On Condition
VeloctiyChanged VelocityChangedEvent When arriving at next waypoint
MoverStopped MoverStoppedEvent Upon arrival at final WP

Data/Properties Provided
Name Class Default
CurrentLocation Coor4D (0,0,0,0)
CurrentVelocity Coor3D (0,0,0)

Syntactic
Standardxiv

12

Compatible Mediators
Name Mediates in compositexv

MoverSensorMediator Yes

Hints and Tips for Usage
Initialize by passing the mover a route. See Java code for details. The route can be
made in different ways, giving you some flexibility.

13

Code

Construction

Connection

Java Doc

Java Source Code

/**
* @author Arent Arntzen
* @version 0.1
* Started 31 May 98
*/

package modsim;

import modkit.*;
import modutil.spatial.*;
import simkit.*;

public class RouteMover extends BasicModSimComponent {
 protected Route4D route;
 protected Coor4D lastPosition
 protected Coor3D lastVelocity
 protected double maxSpeed;

 public RouteMover() {
 super(false);
 propertyDispatcher=new PropertyDispatcher(this);
 eventDispatcher=new EventDispatcher(this);
 lastVelocity=new Coor3D(0,0,0);
 }

 public RouteMover(String name) {
 this();
 setName(name);
 }

 public void setMaxSpeed(double speed) {
 maxSpeed=speed;
 }

 public double getMaxSpeed() {
 return maxSpeed;
 }

 public void setRoute(Route4D r) {
 route=r;
 lastPosition=route.peekNextWP();

14

 }

 public Route4D getRoute() {
 return route;
 }

public Coor4D getCurrentLocation() {
 double atTime=Schedule.simTime();
 double deltaTime=atTime-lastPosition.getT();
 Coor3D deltaMove=(Coor3D)lastVelocity.scalarMul(deltaTime);
 Coor3D lPos=new Coor3D(lastPosition);//make 3D version of lastpos
 Coor3D newPos=(Coor3D) lPos.add(deltaMove);//find new 3D pos
 return new Coor4D(newPos,lastPosition.getT()+deltaTime);//return
4D version
 }

public Coor3D getCurrentVelocity() {
 return lastVelocity;
 }

public double getCurrentSpeed() {
 return lastVelocity.norm();
 }

private void goToNextWP() {
 if (route.hasMoreWP()) {
 waitDelay("doArrivalAtLocation",route.getTimeToNextWP());
 }
 else {
 ModEvent e=new MoverStoppedEvent(this);
 notifyListeners(e);
 }
 }

public void doArrivalAtLocation() {
 Coor4D newPos=route.getNextWP();//since this method is called now
we have arrived
 lastPosition=newPos; //so now this becomes the last known
position
 lastVelocity=route.getVelocityToNextWP();//and this the last
known velocity vector
 ModEvent e= new ArrivalAtLocationEvent(this,newPos,lastVelocity);
 //(this,newPos,lastVelocity);
 notifyListeners(e);
 goToNextWP();//Now schedule the next arrival
 generateVelocityChangedEvent();
 }

 public void generateVelocityChangedEvent() {
 ModEvent e=new VelocityChangedEvent(this, lastVelocity);
 notifyListeners(e);
 }

public void go() {
 goToNextWP();
 }

15

}

16

Notes

i Can be Component or Mediator
ii Shows example of composition with connections established
iii Eventgraph for Discrete Event Simulation Component or Mediators
iv Shows example of composition with connections established
v This must correspond to the Java classname of the eventobject
vi The standard wiring interfaces defining a ModComponent
vii Yes if mediator works when this component is embedded in composite
viii Can be Component or Mediator
ix The picture box optionally graphically describes the component
x Unconnected arrows are incoming or outgoing shared events
xi Eventgraph for Discrete Event Simulation Component or Mediators
xii Shows example of composition with connections established
xiii This must correspond to the Java classname of the eventobject
xiv Standard syntactic interfaces are ModEvent, ModEventListener,
ModEventSource, PropertyProvider, PropertyUser
xv Yes if mediator works when this component is embedded in composite

