Name:

 OA3302

Summer 2004

August 9, 2004

Midterm solutions
1. (18 points) Consider the event graph of the single server queue as presented in class:
[image: image1]
Suppose that service times are random but fluctuate between a “fast” and a “slow” regime, each regime with its own distribution, and that the server stays in a given state (fast or slow) an exponentially distributed amount of time with rate that depends on the state. Assume that at time 0 service times are sampled from the “slow” distribution.

a) (12 points) Modify the event graph above to incorporate the new information about the service times

[image: image2]
b) (6 points) Show the Simkit implementation of the doXXX() methods that correspond to new events and to events that you modified in the single server queue event graph; exclude the reset() and doRun() methods even if they should be modified. Note: credit will be given even if your changes in part b) are not perfect.
public void doMode() {
 m=1-m;
 if (m==0)

 waitDelay(“Mode”, slowMode.generate());

 if (m==1)

 waitDelay(“Mode”, fastMode.generate());

}

public void doStartService() {

 firePropertyChange(“numberAvailableServers”, numberAvailableServers,
 --numberAvailableServers);

 firePropertyChange(“numberInQueue”, numberInQueue, --numberInQueue);

 if (m==0)

 waitDelay(“EndService”, slowServiceTime.generate());

 if (m==1)

 waitDelay(“EndService”, fastServiceTime.generate());

}

2. (26 points) Suppose that the different policyholders of a casualty insurance company generate claims according to an independent Poisson processes with some common rate, and that each claim amount C has some distribution F. Suppose also that new customers sign up according to a Poisson process, and that each existing policyholder remains independently of each other with the company for an exponentially distributed period of time te. Finally, suppose that each policyholder pays up-front the insurance premium at a fixed rate r per unit of time that the customer is under coverage. Starting with 0 insured customers and initial capital K greater than 0, we are interested in using discrete event simulation to find whether the firm’s capital is always nonnegative at all times up to time T.
a) (1 point) Write-down the parameters of the model

{ta}: inter arrival times, exponentially distributed

{te}: time under coverage, exponentially distributed

{tc}: time elapsed between claims, exponentially distributed

K: cash position of the insurance company at time 0

{C}: claim sizes with distribution F

r: rate of accrual of the insurance premium

b) (1 point) Write-down the state variables

N: Customer ID

P: Capital of the insurance company

c) (12 points) Formulate the corresponding event graph

[image: image3]
d) (12 points) Show the Java code corresponding to the Simkit implementation of your event graph including:

· class declaration

· parameters declaration

· state variables declaration

· class constructor if necessary

· reset() method

· doRun() method

· other doXXX() methods,

and excluding:

· setter and getter methods

· execution class
· code commenting

Note: credit will be given even if your event graph of part c) is not perfect.
package oa3302;

import simkit.*;

import simkit.random.*;

public class Insurance extends SimEntityBase {

 protected double capital;

 protected int numberArrivals;

 private RandomVariate exitTime;

 private RandomVariate interArrivalTime;

 private RandomVariate interClaimTime;

 private RandomVariate claimSize;

 private double initialCapital;

 private double rate;

 public Insurance(double ic, double r, RandomVariate et, RandomVariate iat,

 RandomVariate ict, RandomVariate cs) {

 initialCapital = ic;

 exitTime = et;

 interArrivalTime = iat;

 interClaimTime = ict;

 claimSize = cs;
 rate = r;
 }

 public void reset() {

 super.reset();

 numberArrivals = 0;

 capital = initialCapital;

 }

 public void doRun() {

 firePropertyChange("Capital", capital);
 waitDelay(“Arrive”, interArrivalTime.generate());
 }

 public void doArrive() {

 double et = exitTime.generate();

 ++numberArrivals;

 capital += rate*et;

 firePropertyChange("Capital", capital-rate*et, capital);

 waitDelay("Arrive", interArrivalTime.generate());

 waitDelay("Exit", et, new Integer(numberArrivals));

 waitDelay("Claim", interClaimTime.generate(), new Integer(numberArrivals));

 }

 public void doExit(int na) {

 interrupt("Claim", new Integer(na));

 }

 public void doClaim(int na) {

 double claimAmount = claimSize.generate();

 capital -= claimAmount;

 firePropertyChange("Capital", capital+claimAmount, capital);

 waitDelay("Claim", interClaimTime.generate(), new Integer(na));

 }

}
3. (6 points) Consider a single server queue with infinite buffer, and suppose that:
· the inter-arrival times of the first four customers into the queue are
T1=7, T2=1, T3=6, and T4=1
· the service times of the first four customers are
S1=3, S2=3, S3=4, and S4=2.
a) (2 points) For each customer n=1,2,3,4, find Wn , the waiting time in the queue of the n’th customer.

W1 =0, W2 =2, W3 =0, W4 =3.

b) (2 points) Find the arrival rate corresponding to the time when the fourth customer exits the system
That is 4/(T1+T2+T3+T4+ W4+ S4)=4/20=0.5

c) (2 points) Find the average number of customers in the queue by the time that the last customer completes service

This is: (W1 +W2 +W3 +W4)/ (T1+T2+T3+T4+ W4+ S4)=5/20=0.25
Run

Exit

 (j)

Claim

 (j)

Arrive

{++Q}

ts(m)

{++N,

P+= rte}

 N

 N

 j

ta

{--Q,

--S}

{++S}

ta

(Q>0)

Run

{P-=C}

{P=K,

N=0}

ta

ta

te

{Q=0,

S=1}

tc

(S>0)

tc

j

Arrival

Start Serv

End

Serv

Run

Arrival

Start Serv

End

Serv

Mode

tr(m)

{Q=0,

S=1,

m=0}

ta

ta

ts

{++Q}

{--Q,

--S}

{++S}

{m=1-m}

tr(m)

(Q>0)

(S>0)

