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1. Introduction. 
A mine is basically a weapon that can’t move and can only attack a target by blowing itself 

up, a rather primitive approach to warfare. Being required neither to move nor to project power 
at a distance, mines are relatively cheap; a mine may cost thousands of dollars while a missile or 
torpedo of equivalent destructive power would cost hundreds of thousands. Being cheap and 
available on the international arms market, mines can be employed in significant quantity by any 
country with even a modest military budget. They can be very effective. In 1950 during the 
Korean War, the minefield in Wonsan harbor inspired RADM Alan Smith to say, 

  
The US Navy has lost control of the sea to a nation without a Navy, using pre-World War I 
weapons laid by vessels that were utilized at the time of the birth of Christ. (Milia, 1991). 
 
That minefield delayed the planned landing at Wonsan by over a week while 250 ships 

steamed back and forth outside the harbor. The United States Navy lost four minesweepers in the 
process of clearing it, and several other ships were also sunk or damaged (Hartmann (1979)).   

About Iraq’s use of mines in the Gulf War, ADM Arthur (COMUSNAVCENT) said 
 
Iraq successfully delayed and might have prevented an amphibious assault on Kuwait’s 
assailable flank, protected a large part of its force from the effects of naval gunfire, and 
severely hampered surface operations in the northern Arabian Gulf, all through the use of 
naval mines.(Mardola and Schneller, 1998)  
 
Even when the location and nature of the Iraqi minefields was revealed after the war, it took 

several months for the allied nations to clear them. 
The first effective use of mines was by the Confederacy in the US Civil War; the 

“torpedoes” that Adm. Farragut damned at Mobile Bay were actually mines. Mines have been 
employed effectively in every major war since then. Hartmann (1979) gives a concise naval 
history as well as considerable technological information, or see Milia (1991). Mines will surely 
continue to be an important part of warfare. The availability of cheap microprocessors with low 
power requirements has given modern mines a technological advantage, and even mines 
designed decades ago have shown themselves to be effective in recent combat (Wettern (1991)). 

Minefield models at several levels of complexity are needed to study, rehearse, and conduct 
this important component of warfare. These notes will review naval planning models, beginning 
with the simple and proceeding to the complex. For the most part these models make heavy use 
of the Theory of Probability, a natural consequence of the fact that neither side knows exactly 
what the other is doing in mine warfare. Reference will be made to models that are or have been 
in use by the US Navy, as well as to models that are hypothetical. 

2. A Little Technology. 
The earliest sea mines were contact mines. Contact mines are still in use, but they have three 

important disadvantages. Except in shallow water, one disadvantage is that they must be 
anchored to the seabed by a cable that extends nearly to the surface, making them vulnerable to 
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mechanical minesweeping. A second disadvantage is that the radius of action is limited by the 
target’s presented width, and the third is that sea mines are most lethal when they detonate 
significantly below the target, rather than in contact with it. There are thus three powerful 
reasons for employing mines that can sense targets at a distance, so it should not be surprising 
that most modern mines are “influence” mines of this type. In water that is not too deep (roughly 
200 feet, depending on charge weight and target), influence mines can rest on or near the seabed 
and still be a threat to targets on the surface. In deeper water they must either be moored or have 
some way of moving toward the target. The former choice makes the mooring cables vulnerable 
and the latter makes the mines expensive, so, given a choice, a minefield planner would prefer 
water that is not too deep. Figure 1 shows the options available as a function of water depth, 
including the possibility of a rising mine in deep water. 

 

 
 

Figure 1:  Mining options depend on water depth.  
 
The three most common sensory phenomena are magnetism (the passage of a steel ship 

changes the local magnetic field), sound (ships make underwater noise), and pressure (there is a 
temporary decrease in pressure under the keel of a moving ship, proportional to the square of the 
ship’s speed). The first two sensor types permit longer detection ranges than the third, but are 
subject to sweeping by minesweepers or helicopters that artificially create the magnetic/acoustic 
signatures characteristic of target ships. The advantage of the pressure sensor is that there seems 
to be no way to create the pressure effect except by having a large “guinea pig” ship pass over 
the mine, an awkward sweeping technique. However, the pressure sensor is subject to false 
alarms due to waves, so it is usually used in combination with others. Using a combination of 
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sensors also tends to frustrate minesweeping, as does the employment of other counter-
countermeasures such as time delays or “counters” that detonate the mine only after it has been 
actuated a certain number of times. 

Mines can also be countered by “hunting”, by which is meant locating a mine by some 
mechanism (eyeball, sonar, laser,…) independent of the mine’s sensors. Any “mine-like-objects” 
detected are examined more closely and, if judged to be mines, either avoided or destroyed. 
Hunting has an advantage over sweeping in that counter-countermeasures that work against 
sweeping are without effect, but hunting suffers from false alarms, a relatively low sweep width 
(particularly against bottom mines that are partially buried), and susceptibility to decoys. The 
proper division of effort between sweeping and hunting is one of the reasons for developing 
mine warfare models. 

A third countermeasure is to cover a given area with such intense lethal effects that all 
mines contained in it are necessarily destroyed. This “destruction” alternative has the advantages 
that it can’t be outwitted and that false alarms are not an issue, and the disadvantages that it is 
expensive and (of course) destructive. It is generally implemented by line charges or intense air 
strikes, and used only when minefields are both dense and unavoidable. 

Water is denser and less compressible than air, so sea mines tend to have a much larger 
radius of action than land mines, particularly against targets subject to damage by shock waves. 
Sea mines are also harder to sweep and hunt than land mines, so mine warfare is an essentially 
different topic in the Navy, where mines are a potential show stopper, than in the Army, where 
mines tend to be viewed as a nuisance, albeit one that has to be planned for. An exception to this 
is the availability of artillery in conjunction with minefields on land. Artillery does well against 
concentrated targets, and since one countermeasure to minefields is concentration, the two 
measures can be particularly effective if used together. Naval minefields are rarely supported by 
artillery, although the WWI minefield in the Dardanelles is an exception to this. 

Once planted, a minefield does not distinguish between friend, foe, or neutral. The Hague 
Convention of 1907, which was adopted by many nations after mines laid in the Russo-Japanese 
War caused extensive damage to merchant shipping, contains some rules designed to prevent 
damage to neutrals. Floating mines are essentially prohibited, and the existence of minefields 
threatening to neutrals must be published. Floating mines still occur, however, and the use of 
influence mines was not even anticipated in 1907. It remains true that most ships damaged by 
mines are neutrals, rather than combatants. The situation is even more serious on land, where 
there is widespread use of mines costing as little as $5 that remain dangerous for years after they 
are laid.  

3. Campaign/Theater Level Models. 
Large scale models of warfare are generally not built to study the details of minefield 

construction and countermeasures, but still need to represent mine warfare in some simple 
manner. The problem in such models is to retain the essence of mine warfare without including 
too many details, databases, or megaflops.  

In a wargame, a “minefield” might be as simple as a prohibited region with an associated 
story line. The designer might announce, “Blue ships are not allowed to transit XYZ strait 
because of the presence of minefields”. The implied model of mine warfare is that 
countermeasures are impossible, reconnaissance is perfect, and Red’s logistic problems in 
creating the minefield are negligible. All of those statements might be false, but even so the 
model might be satisfactory. XYZ strait might be a shallow, easily mined area that, in the 
judgement of the wargame designer, would simply be avoided by Blue in the event of a conflict. 
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The players might also be allowed to create their own minefields if the game included 
realistic rules and constraints. A possible set of rules might be:  

 1) Red can construct only 10 square miles of minefield during the game, and each 
minefield requires the presence of some Red unit when it is created. 

 2) Except for minesweepers, any Blue unit is sunk immediately upon entering a Red 
minefield, and the outlines of the minefield are then revealed to Blue. Red units are unaffected 
by Red minefields. 

 3) Entry of any Blue minesweeper into a Red minefield will immediately reveal its 
outlines to Blue, and furthermore the minefield will disappear 48 hours later. 

There would be similar rules for minefields created by Blue. These rules are probably overly 
simple, since they permit a single unit to create or counter a minefield. A clever player might 
create lots of long, thin minefields covering very little area that would effectively prohibit 
movement by the other player, an effective but unrealistic tactic that is permitted by the rules. 
Nonetheless, the rules are easily understood, easily implemented, and adequate for some 
purposes. They permit mine warfare to be “played” in a manner that is impossible if minefields 
are simply announced by the designer. A rough replication of what happened at Wonsan might 
happen within them. 

The above sketches might be called “permission” models, since the central idea is an area 
where every unit either has permission to enter or not. While such models are useful for some 
purposes, an important idea is missing -- the idea that a ship might enter a minefield and still not 
be damaged. The fact is that most ships that 
enter real minefields are not damaged, so 
there is a danger of overstating the 
effectiveness of minefields if the possibility 
is ignored. Including it in a quantitative way 
will require the introduction of Probability, 
a characteristic of all the models that 
follow.  

The US Navy’s wargaming model 
ENWGS includes a mine warfare feature 
that is a permission model with one more 
level of detail: the number of mines M in 
the minefield. This number gradually 
decreases with time in ENWGS, either due 
to detonations caused by target ships or to 
minesweeping. ENWGS does not retain a 
location for each mine, but instead 
incorporates the assumption that a ship that 
travels a length L in the minefield during some time interval will actuate all mines in an area 
WL, where W/2 is the radius of action of each mine. If the minefield covers an area A, the 
probability that the ship actuates any randomly located mine is therefore WL/A. When running 
in its Monte Carlo mode, ENWGS computes for each ship the length L traveled in the minefield 
over the period in question, converts L to an actuation probability WL/A, and then generates a 
uniform random number U; if U is smaller than WL/A, the mine actuates and disappears. The 
ship also disappears unless it is a minesweeper. Alternatively, since all mines are assumed to be 
located independently at random within A, one could compare a single random number to the 
probability PM that at least one mine is detonated by the ship: 

minefield width (b)

ship track

mines

W

Figure 2: One ship, three mines 
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 PM=1 - (1-WL/A)M.  (1) 
Comparing one random number to PM is equivalent to comparing M independent random 

numbers to WL/A. Figure 2 shows as a dashed line the track of a ship that does not actuate either 
of three randomly located mines. Obviously the track and/or the mines could be rearranged so 
that one or both of the mines is actuated. Ignoring edge effects, the probability of that event is 
PM. 

Formula (1) requires the assumption that the mines are located independently at random in 
the minefield, an assumption echoed by most minefield models. There is an odd dissonance here: 
the platforms responsible for laying mines usually practice laying them accurately, whereas 
practically every minefield model begins by assuming that the mines are simply strewn about at 
random within the minefield. The reasons for this curious situation are worth a digression. 

Seemingly a minefield planner would want to arrange his mines in such a manner as to leave 
no gaps in coverage, which would typically have them being evenly spaced on a single line 
perpendicular to the direction of ship traffic, rather than spaced randomly throughout the 
minefield. Laying mines in lines is also tactically convenient, so one would expect to encounter 
lines of mines in practice, rather than fields of them. In fact one does encounter mine lines in 
 

Figure 3:  Desert Storm minefields 
practice. Figure 3 shows the locations of the mine lines/fields laid by Iraq before Desert Storm. 
Even the areas shown as fields actually consisted of multiple lines. Incidentally (to digress a bit 
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within this digression), Figure 3 also makes it clear that the original US sweeping plan was in an
area where there were no mines. The strikes on the Tripoli (moored mine) and Princeton (bottom 
mine) were the first indications that the minefields were actually located as shown, and the exact 
locations were not known until after the war. The Tripoli and Princeton paid for the lack of 
surveillance of minelaying operations (see Lyons, et al. (1993), from which Figures 1 and 3 
taken). 

Eve

 

were 

n though Desert Storm mines were laid in lines, they were not laid in a single line. There 
are t

gle 

he mine laying planes always laid their mines in a simple row which made it easy for our 

nd so, partly because a minefield planner is already thinking of counter-countermeasures, a 
give

wo advantages to the miner for not using a single line. One is the avoidance of fratricide 
among the mines or minelayers. The other is to complicate the MCM job, since mines in a sin
line are easy to sweep or avoid once the orientation of the line is discovered. At the end of World 
War II, Japanese Navy Captain Tamura was interviewed about the effectiveness of the Massive 
B29 drops of mines in Japanese waters (Navy, 1946). He said that the drops were on the whole 
very effective, but that 

 
T
lookout activities to analyze the plan and determine where the mines were and adopt 
effective countermeasures. It is necessary to vary the plan of laying occasionally.  
 
A
n “approach channel” like the one in Figure 3 is likely to include parts of several mine lines. 

Straighten out the approach channel into a long, narrow rectangle, and speculate about the cross-
channel coordinates of the enclosed mines. They are unlikely to be evenly spaced for two 
reasons. First, the effective mines on a given line will not be evenly spaced because some m
are duds, some are deliberately configured differently from their neighbors, and because of 
navigation or timing errors in minelaying. Second, the positions on the various lines can 
reasonably be assumed independent -- how could they be coordinated when the minefield
planner doesn’t know exactly where the channel will be or whether it will be slightly crook
like the one in Figure 3? The net result of superimposing the cross-channel coordinates of the 
mines on different lines, each with a different spacing, will be much closer to the cross-channe
coordinates of a random minefield than to a minefield with regular spacing. In other words the 
random minefield assumption is robust to the kinds of deviations from the ideal of regularity tha
actually occur in practice. It is not true that mines are deliberately

ines 

 
ed, 

l 

t 
 placed at random, but the 

effect is much the same.  This long digression has had the purpose of justifying the assumption of independence in
equation (1). The indepen

 
dence assumption is not always so easily justified, and has caused 

cons ds 
to 

IT)”. The threat to the second ship will not be as high. For one 
thin e). 

iderable mischief when employed in the wrong circumstances. The assumption usually lea
to simple, transparent computations, so it is often tempting to make it “as an approximation” 
avoid some analytical complexity or database deficiency. If the assumption is substantially 
wrong, results can be misleading. 

When equation (1) is applied to the first ship through a minefield, the left-hand-side is 
known as “Simple Initial Threat (S

g, the first ship might remove one of the mines (every ship gets to be a minesweeper onc
This effect is handled in the ENWGS Monte Carlo simulation by decrementing the number of 
remaining mines, but there is an implied assumption about reality in proceeding with that 
method. The assumption is that the remaining mines have locations that are independent of the 
locations of the original mines, as if the passage of the first ship caused all of the mines to 
activate a little motor and move to a new position. The assumption is incorrect, since the 
remaining mines are a subset of the original mines and mines don’t move. The falsity of the 
assumption might not be important if the second ship chose a track far away from that of the first 
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ship, but in fact the second ship is likely to take great pains to follow the first ship’s track 
closely as possible, especially if the first ship makes it t

as 

 

t only that 

imp

ce planning is 
conducted in the expectation of channelization. The channel shown in Figure 3 was intended to 
avoid m  all mines outside 
the c

 
ed in 

 channel centerline. The wider the error 
dens  

a mine actuates if the ship’s closest 
poin  

y 

 within 
100, while A(x) includes the possibility of
devi

 

itivity settings. Preventing these “wasted fires” is one of the main goals of the 
min

nd 

hrough the minefield. That being the 
case, this second independence assumption is disastrous to the verity of the model for anybody 
wishing to explore the benefits of channelization, the most basic mine countermeasure. If the 
first ship actuates no mine, then the second ship’s chances should be improved by the 
knowledge, but the ENWGS model gives the same chance to both. A naive user might conclude
from experience with the model that the most basic countermeasure is actually ineffective. 

It does not follow from the above comments that the ENWGS model is useless, bu
it should not be used to explore the benefits of channelization. ENWGS comes closer to reality 
than a simple permission model, and it does so without being excessively complicated, an 

ortant feature in a wargame where more important things than minefields must be 
represented accurately. This kind of situation is typical in studying mine warfare -- models are 
neither good nor bad in any absolute sense, but only for specific purposes. 

4. Uncountered Minefield Planning Model (UMPM). 
A more exact title for this section would say “almost uncountered”, sin

ost of the Iraqi mines by using only a very small part of the mined area;
hannel have no chance as long as traffic sticks to the channel. Since the minefield must be 

planned without knowing where the channel will be located, channelization is an effective 
countermeasure to the extent that many channels are possible. Obviously the minefield planner 
would prefer a narrow constriction where the number of potential channels is small. Iraq had no
such choice in mining the waters off Kuwait, but historically mines have tended to be utiliz
straits and ports where traffic is naturally constricted. 

Channelization never works perfectly because ships make navigation errors. Assume that 
ship navigation errors are independent random variables with a common density f(x), with each 
error representing the ship’s actual track relative to the

ity, the wider the channel and the more effective the minefield. Typically f(x) is assumed to
be normal, but it will be treated generally in this section. 

In section 3, actuation was assumed to be a matter of whether the ship came within W/2 of 
the mine. We now replace that assumption with one that realistically permits mine actuation to 
be uncertain.  Specifically, let a(x) be the probability that 

t of approach is x, an “actuation curve” that can be determined by experimentation. The two
functions a() and f() can be combined into one by convolving them to obtain A(x), the probabilit
that a ship attempting to follow a straight line will actuate a mine x away from the line: 

      A(x) = a(x - u)f(u)du                     -∞
∞z  (2) 

The effect of the convolution is that A(x) has rounder corners than a(x), as can be seen in 
Figure 4. In that figure a(x) corresponds to a mine that always actuates if the ship comes

 normal navigation errors with mean 0 and standard 
ation 50. 
In section 3, a ship was assumed to be damaged if and only if it actuated a mine. In actuality

a ship may sometimes actuate several mines before being damaged, particularly if the mines 
have high sens

efield planner, so it is essential to have a model that at least recognizes the idea. Let d(x) be 
the “damage curve”, the probability that a detonating mine will damage a ship at distance x, a
let D(x) be the probability that a ship attempting to follow a line will actuate a mine located x 
away from the line and be damaged by it. Then 
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           D(x) = d(x - u)a(x - u)f(u)du                         -∞
∞z  (3) 

In principle the first actuation may not lead to detonation because of the presence of 
counter-countermeasures that require multiple actuations. 
in this section because no countermeasures are expected, 

These possibilities are being ignored 

u) b oes no 

))n. The probability of damage given 
actu

ility is that no ships are damaged, since a mine can only detonate once.  
ssume next that rectangular minefield 

of w
the h
dam

hence the simple multiplication of a(x-
y d(x-u) in (3). The difference A(x)-D(x) is the probability that the mine actuates and d

damage, in other words the probability of a wasted fire. 
Now consider a group of n ships that attempt to transit a line located a distance x away from 

a mine. All transits are independent when x is given because of the assumption about navigation 
error, so the probability that the mine actuates is 1-(1-A(x

ation is D(x)/A(x), so 
 Rn(x)≡P(1 out of n ships is damaged by a mine at x) 
                                     =D(x){1-(1-A(x))n}/A(x) (4) 
The only other possib
A the ships attempt to follow a line near the center of a 
idth b, as in Figure 2, and consider the effect of the first mine encountered, the mine nearest 
orizontal line of ingress. The unconditional probability Rn* that one of the first n ships is 

aged by the first mine is just the average value of Rn(x) across the breadth of the minefield: 

                 R = 1
b

R (x)dx                          n
*

-b/ 2
b/ 2

nz  (5) 

Formula (5) also applies to the second and subsequent mines, possibly with a reduced value for 
n.  o far the UMPM in
an actuation curve, a dam

th, and a number of ships. The 
com

 Pn 

WGS 

 so far, 
but 

ffectivenes
, but SIT gives no clue to the threat to following ships, which 

t (imagine a minefield with one big

S puts have been 
age curve, a  

navigation error density, a minefield 
wid

 

s (MOE) to use in planning a minefield. 

Figure 4:  Actuation probability versus 
distance (x) from mine to intended track. 

putational effort required is mostly 
the numerical integrals required to 
evaluate (2)-(5). With the ENWGS 
assumptions, Rn

* would be given by
(equation (1) with M=n). Thus the main 
difference between UMPM and EN
is in the way Rn

* is calculated.  
The numbers Rn

* turn out to be all 
that is necessary to analyze a minefield 
of multiple mines, even though only a 
single mine has been considered

first it is necessary to consider 
quantitative goals for the minefield 
planner.  

It is not obvious what Measure of E
Simple Initial Threat is widely used
can be much smaller than the threat to the firs  mine). There 
has e 

 

been some debate within the US mine warfare community over exactly what statistics ar
worth looking at when designing a minefield, the result being that UMPM computes and 
displays multiple MOE’s for the inspection of the planner. For a hypothetical input number n of
transiting ships, these include 
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 1) “Threat profile”: The probability that the ith ship is damaged by a mine, i=1,…,n. For
i=1 this is SIT. 

 

ability is called the “catastrophe probability”1, catastrophe being from the 
view o

lties 
 attempted”, UMPM outputs the probability that i ships will 

pene ra

is no

t m 

,k+1) + (1-Rk )x(m,k); 0≤k≤n, (6) 

exce
expresses the idea that, if k ships remain after m+1 mines have been passed, then there must have 

te 

 when the number of ships is held constant. The reason 
is th nal

 2) “Casualty distribution”: The probability that k out of n ships are damaged, k=0,…,n. 
For i=0 the prob

p int of the minefield planner. 
 3) “Stopped penetrator distribution”.1 For an additional user input “number of casua

after which no further transits will be
t te; that is, that i out of n ships will neither turn back nor be damaged by mines, i=0,…,n. 
Each of these quantities has a similar method of computation in UMPM. The computational 

details are given below only for the casualty distribution (see Odle (1977) for the others). There 
 loss of generality if one imagines that all n ships attempt to transit the minefield in a 

compact group that is gradually reduced in size as additional mines are encountered. Let x(m,k) 
be the probability that k ships are still alive (undamaged) after the group has passed the firs
mines, for 0≤k≤n. Then 

x(m+1,k) = Rk+1
*x(m *

pt that the first term is missing if k = n because n is the total number of ships. Equation (6) 

been either k+1 or k ships alive after passing m mines. In either case, the probability that the 
(m+1)st mine does no damage is assumed to depend on the number of remaining ships, but not on 
the mine index. Since x(0,k) = 0 for 0≤k<n and x(0,n) = 1, equation (6) can be used to calcula
x(1,k) for all k, then x(2,k) for all k, etc., until finally x(M,k) for all k is obtained. The casualty 
distribution is then x(M,n-k); k=0,…,n.  

The assumption in (6) that damage by (say) the second mine has the same probability as 
damage by the first is questionable, even

at the Theorem of Total Probability requires the damage probabilities in (6) to be conditio
on the number of surviving ships, and there is information about navigation errors in the mere 
fact of survival. Ship navigation errors relative to the channel centerline are all independent a 
priori by assumption, but they are not independent under the condition of no damage by the firs
mine. In particular, the probability that the navigation errors all happen to be approximately 
equal ought to be relatively high under that condition, since one reasonable explanation of no 
damage to a group of ships is that they all happen to follow nearly the same lucky track. If 
navigation errors at the second mine are the same as at the first, use of (6) is therefore 
unjustified, strictly speaking. The simplest way out of this analytic crisis is to assume that s
wander about the centerline of the channel, so that navigation errors at the successive m
independent even for the same ship. The resulting minefield analysis is known as “semi-
configured”, in contrast to the “fully-configured” case where ships travel in straight lines and the
navigation error is the same at every mine, as illustrated in Figure 2. Thus UMPM is a se
configured model. The fully-configured case is a much more difficult analytical problem in spite 
of its seeming simplicity. Another way of putting it is that UMPM models the number of alive ships k as a Markov
chain with a transition every time the group of surviving ships encounters a mine, with each 
transition being to either k

 

t 

hips 
ines are 

 
mi-

 

 or k-1 according to (6). The Markov assumption requires the ship’s 
trac

                                                

ks to wobble about the centerline. 
Some of the UMPM calculations are incorporated in sheet “UMPM” of workbook 

MineWar.xls.  
 

1 This term was coined by Jim Horrigan. Interest in stopped penetrator distributions is also due to him.  
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4.1  Simple extensions to UMPM 
aking 

tions to the UMPM algebra.  
If every m he probability that the mine is functional, 

indepen f ed for by multiplying the damage curve 
d(x)

ve the effect of multiplying both A(x) and D(x) by ACT 
and 

 ma
 

ution can still be obtained by Markov chain calculations. The 
state n” 

 

Several important phenomena can be included in semi-configured calculations by m
minor modifica

ine has a reliability R that represents t
dent o  all other mines, then it can be account

 by R. The effect of this will be to multiply D(x) and Rn
* by R. All measures of minefield 

effectiveness will be affected adversely. 
A probability actuator is a counter-countermeasure that actuates the mine with probability 

ACT when the physical signals that would otherwise suffice for actuation are received, 
independently on each occasion until the mine finally actuates. To account for it, multiply the 
actuation curve a(x) by ACT. This will ha

thereby reducing Rn
* substantially for small n, or less so for large n. This will decrease SIT, 

but will increase the threat to later arriving ships. 
Minefields are typically planned by inputting a fixed number of mines M and seeing the 

consequences, but the UMPM calculations can be easily adapted to the case where the number of 
mines is random. Let P(m) be the probability that m mines will actually be present, m=0,…,M, 
and let x(k) be the probability that k ships out of n will survive. Then 

 M
m=0     x(k)= x(m,k)P(m)                    ∑  (7) 

Since UMPM automatically computes x(m,k) for m=1,…,M-1 in the process of computing 
x(M,k), the data required for (7) are already available, and x(n-k) is the desired probability of k 
casualties (but see exercise 14).  

It ip will actuate additional y be desirable to include the possibility that a damaged sh
mines, in contrast to the UMPM assumption that damaged ships sink immediately. If every
damage incident results in sinking the victim with probability S, independently of all other 
incidents, then the casualty distrib

 space must be changed to include “ghost” ships (damaged but not sunk) as well as “virgi
ships, however, so these calculations would require a revision of the UMPM program, rather
than a simple manipulation of inputs (see exercise 3). 

4.2  Essential problems with UMPM. 
It was mentioned in section 3 that UMPM is a semi-configured model: mines don’t move

but ships are assumed to wobble enough in the channe
, 

l to justify the independence assumption 
required in (6). A fully-configured analysis would probably come closer to reality, but the 
required if ay be an example of a 
prob

half 
ty that 

 
g wrong with doing so if every ship 

som

 

 mod ications to UMPM would be complex. While this m
lem that is insoluble but not serious, there are also some serious problems. Chief among 

these is UMPM’s use of a “pre-averaged” actuation curve. 
Suppose that half of the ships are of type 1, with actuation curve a1(x), while the other 

have actuation curve a2(x). Let a(x) ≡ .5a1(x)+.5a2(x), so that a(x) represents the probabili
a randomly selected ship actuates a mine. Is there anything wrong with simply running UMPM
with the single actuation curve a(x)? There would be nothin

ehow mutated between mines so that its type was independently selected for each mine, but 
unfortunately a ship’s type remains fixed throughout the transit. Displacement, magnetic 
moment, speed, and noisiness are all important determinants of the actuation curve for which 
there is no reason to expect any fluctuation during a transit. The independence assumption that 
UMPM requires is not true in these circumstances, and the error involved in using it can be 
significant. For an extreme example suppose that a1(x) = 1 and a2(x) = 0 for all x, possibly
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because the mines are magnetic and type 2 ships have no magnetic moment.  Also suppose 
d1(x) = d2(x) = 1 for all x. The planner’s object is to make SIT = .9. Using d(x) ≡ 1 and a(x) ≡ .5 
in UMPM would lead to the conclusion that 4 mines are required. In actuality SIT cannot be 
made larger than .5 no matter how many mines are used, and only one mine is required to d
This is an extreme example, but the effect can be significant even in practical situations. 

Pre-averaging was described above as a problem caused by the variability of ships. The 
variability of mines causes similar difficulties. a1(x) might be for a mine with high sensitivity
while a2(x) is for a mine with low sensitivity. The UMPM calculations assume implicitly that 
sensitivity is independently determined for each interaction with a ship, which isn’t true. 

o so. 

 

If mines 
diffe ns 

 types. Mixed minefields are not uncommon. 
 

n 
real  

r significantly from each other, UMPM’s predictions may be wrong. Here are some reaso
why mines might differ from each other: 

 1) Magnetic mines that lie on the bottom, a common type, typically measure only one 
component of the magnetic field. Therefore the actuation curve depends on the orientation of the 
mine when it hits the bottom. The orientation is random, but does not change with time. 

 2) The mines might be of different
 3) Tactical parameters such as sensitivity or actuation probability might be deliberately

varied by the minefield planner. 
 4) Production variances. Two mines of the same type with identical settings will i

ity perform differently. 
To summarize, UMPM correctly handles the fact that the location of a mine does not chang

between transits, but all other mine characteristics are necessarily pre-averaged into the actuation 
e 

curv . M PM 
al effort to that feature (in fact, configuration of mine location is the 

main

e ine location is surely the most important property to configure, and in this sense UM
wisely devotes computation

 difference between UMPM and the ENWGS model). Nonetheless, mines have many 
properties other than location that, while random, are not independently random for each mine-
ship interaction. The resulting deviations from reality can be significant.  

4.3  Monte Carlo simulation. 
UMPM is an analytic model, whereas the ENWGS model of section 3 is a Monte Carlo 

simulation. Analytic and Monte Carlo methods are two essentially different approaches to 
probability problems that compete with and complement each other in many areas, minefield 
analysis  xploit independence assumptions to produce 
form

r to 

e 
f casualties CAS is accumulated in the appropriate cell of C() at the end of each 

replication. To parallel the UMPM calculations, the actuation question in Appendix A would be 
dom 

sity 
 

 being one of them. Analytic methods e
ulas like (6) that make computer implementation efficient. Monte Carlo methods appeal 

directly to the idea of probability as a long-run frequency, using a random number generato
determine random quantities in a repeated experiment. Monte Carlo methods do not require 
insights like (6), but they do typically require long computer run times to determine accurate 
results.  

Appendix A is a flow diagram of a Monte Carlo simulation that parallels the UMPM 
assumptions except that it is fully-configured. It measures the casualty distribution C() by 
making REP replications of an experiment where n ships transit a minefield with M mines. Th
number o

answered by finding the distance x between mine j and ship i and then testing a uniform ran
number against a(x). Given actuation, the damage question would test another uniform random 
number against d(x). The convoluted functions A(x) and D(x) are not required, but the den
function of navigation errors is still needed because navigation error needs to be set for each ship
in the “set ship properties” block. This navigation error is set only once for each ship in each 
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replication, which is why the simulation is fully-configured. 
If REP=10,000, then C(K)±.01 is at least a 95% confidence interval on the true probability

of K casualties, sufficiently accurate for most minefield planning. Modern (1995) computers are 
fast enough to do 10,000 iterations of Appendix A’s logic in a few seconds, so an evaluative 
tactical decision aid could be based on Monte Carlo simulatio

 

n (see Mullens (1993), Washburn 
(199

n 

ppendix A, since these changes would require either a more extensive data base or a 
better physical understanding. UMPM requires only one actuation curve for a given ship-mine 

 
c 

 

mine’s signal processing to decide when actuation occurs, if 
ever S) 

 

rs”, a term that is meant to include hunting as well as 
sweeping. 

MC n ficult than minefield planning. 
Min e 

5)). Monte Carlo simulation could also potentially deal with pre-averaging problems. The 
actuation curve could depend on ship properties such as magnetic moment or on mine properties 
such as orientation, each property set once per replication. The damage curve might depend o
ship displacement or some better measure of ship hardness. However, it is not just a matter of 
revising A

combination. To make that curve “depend on” the mine’s orientation requires either an 
expansion in the amount of data that has to be measured and stored (8 orientations would require
8 times as much data, etc.), or else some method of adapting a single actuation curve to specifi
situations. An example of the latter approach would be to argue that magnetic actuation distance
is proportional to the cube root of ship displacement2, in which case one actuation curve will 
suffice for all ship displacements. 

One could go further. UMPM and all of the minefield planning models discussed so far 
settle actuation questions at the closest point of approach using an actuation curve. One could 
dispense with the actuation curve, since it is in actuation that most of the pre-averaging problems 
arise. The idea would be to gradually move each ship along its track, use a physical model to 
predict influences, and imitate the 

. In fact such detailed simulations already exist, the Total Mine Simulation System (TMS
being one of them. The trouble is that simulations like TMSS are so slow that they cannot be 
used for tactical purposes. A good minefield planning model must be a compromise between the 
twin goals of accuracy and speed. 

5.0 Mine Countermeasures (MCM). 
In the rest of these notes the ships that are the target of the minefield will be referred to as

“transitors”. The MCM ships (or helicopters) that employ countermeasures will be called 
“minesweepers” or simply “sweepe

M pla ning has some features that make it more dif
efields are usually laid in secrecy, so the location and even existence of the minefield may b

initially unknown to MCM forces. If at least the identity of the miner is known, it may be 
possible to make some inferences about the type of mines to be expected, but even in that 
the mines w

case 
ill still have unknown sensitivity, unknown mine count, and unknown delay arming 

adju  

e 

ust compared to nonsequential plans such as “sweep 
the f  in 

                                                

stments. In the face of all this uncertainty, MCM forces must make clearance plans and
eventually decide when to say “all clear”. 

The MCM problem has so much uncertainty that one might expect clearance plans to b
sequential. That is, one might expect to encounter rules of the form “stop sweeping after five 
successive sweeps have detonated no more mines”, or “hunt for 8 hours, determine the identities 
of any mines found, and then, depending on results, either continue to hunt or switch to 
sweeping”. Sequential plans tend to be rob

ield seven times” or “hunt 8 hours and then sweep 8 hours”, so the use of sequential plans
 

2 The argument would be that the magnetic disturbance seen by a mine is proportional to ship displacement and (in the far field) 
inversely proportional to the cube of distance from the ship (Hartman, 1979, p 115).  
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MCM would seem natural. Sequential plans are employed in MCM, but not formally; that is, 
they are never known in sufficient detail that they can be written down in the manner of the two 
quoted fragments. Formal MCM plans turn out to be nonsequential plans developed with
of computer programs that begin by asking questions like “what are the dimensions of the 
minefield?”, “what kind of mines are you trying to sweep?”, and “what is the mine sensitivity?”. 
Such nonsequential plans are easy to derive, easy to communicate, and easy to measure. On 
account of these virtues, nonsequential plans are dominant in practice in spite of the theoretical 
and intuitive virtues of sequential plans. 

The primary MCM planning tools for the US Navy are a pair of computer programs th
settle most of the uncertainties discussed above by requiring the operator to provide an input. 
NUCEVL (Non Uniform Coverage EVaLuator) is an evaluation tool that asks the operator to
provide a sweeping plan and then outputs the fraction of mines at location y that will be swept at
least k times, for operator selected values

 the aid 

at 

 
 

 of y and k. The idea is that the operator inspects the 
outp

he 

 

he 

s 
s output. A database of curves is awkward for a manual procedure, 

part

 

he 
kely 

to be highly uncertain about it. The missing estimate causes no problem as long as the only 
quantity of inte ed, but eventually a judgement that the minefield 
is “s ber 

 

ut, decides whether the numbers are sufficiently large, and then possibly revises the plan. 
UCPLN (Uniform Coverage PLaNner) reverses the procedure by asking the operator to input t
required sweep probability, and then outputs the uniform sweeping plan that just barely meets 
the requirement. Both programs are based on the work of R.K. Reber (1956).3 The minefield is 
modeled more or less as in UMPM, except that minesweepers attempt to follow different paths
and can’t be sunk. 

NUCEVL and UCPLN accept only “squared-off” actuation curves of height B and width A; 
that is, it is assumed that a(x)=B if |x|<A/2, else a(x)=0. This approximation is mostly because t
computer programs are automations of procedures that were at one time done by hand. Either 
way it is necessary to have a database that takes mine type and sweep type as input and produce
an actuation curve a

icularly if the curve has to be used for further computations; it is much simpler to store and 
use two numbers A and B. The need for replacing curves by numbers disappears in the computer 
automation, but nonetheless the A/B approximation continues to be employed. Mine warfare is
just one example of an area where concepts and procedures that were at one time forced on 
analysts by computational necessity persist long after the limits are relaxed. 

Even though current tactical decision aids are nonsequential, it is worth exploring how 
sequential aids might be constructed. The decision to allow transitors into the swept minefield 
depends critically on the estimate of the number of mines that remain after sweeping. The 
quantification and sequential revision of such estimates are the subject of the next section. 

5.1 Residual mines. 
NUCEVL and UCPLN do not ask the user to guess the number of mines initially in the 

minefield, and provide no information about the residual number of mines after sweeping. T
avoidance of reference to this seemingly vital number is actually natural, since the user is li

rest is the fraction of mines clear
ufficiently safe” for transitors will have to be made. At that point an estimate of the num

of mines remaining is required. 
Suppose, for example, that a minefield is swept in such a manner that every mine is removed

with probability .5, and that the number of mines removed Y is observed to be 4. How many 
mines are left? One could argue that there must be 4 left, since as many mines were not removed 

                                                 
3 Reber was an early and prolific writer on probabilistic models of mine warfare.  His work includes some sequential mine 

clearance ideas that he referred to as "observational rules". 
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as were removed. But this is a crude guess, since the number of mines remaining is clearly 
random, and besides it may seem odd that the number of mines remaining should increase with 
the n

 

er 

 

j+1 j
meters α and β must be such that α>0 and β<1 (otherwise the sequence diverges), and 

in ad
 

ic of 

 

i g

y+ jy 
 

xj
*≡

umber removed. One could argue just as effectively that removing mines should cause the 
number remaining to decrease, rather than increase. This paradox can be resolved by assuming a 
prior distribution for the number of mines and applying Bayes Theorem.  A prior distribution is 
required if statements about the residual threat of the minefield are to be made; information
about the fraction of mines removed is insufficient, in itself, for making an assessment of the 
number of mines remaining. 

The rest of this subsection deals with a particular “Katz” class of probability distributions.  
If Excel workbook MineWar.xls is available, the reader may wish to open it up to sheet “Katz” 
before continuing.  Formulas (10)-(12) below are built into that workbook, along with some 
graphics.  In addition to the specific example given below, the reader can experiment with oth
inputs. 

Let M be the initial number of mines, and let xj be P(M=j); j≥0. The prior distribution 
consists of x0, x1, etc. In principle any prior distribution can be used, but it turns out that there is
a particular 2-parameter class of distributions with convenient analytic properties in this 
situation. This is the Katz class where the ratio formula x /x =(α+βj)/(j+1) holds for j≥0. The 
two para

dition the ratio -α/β must be a positive integer if β<0. When β<0 the distribution is a 
binomial distribution with -α/β trials and -β/(1-β) success probability. α/β need not be an integer
when β>0, but if so then the distribution is the negative binomial distribution characterist
counting the failures until the α/βth success in repeated trials where the failure probability is β. 
When β=0 the distribution is Poisson with mean α. Katz (see Johnson and Kotz (1969)) showed
that the probability generating function is E(zM) 4=((1-βz)/(1-β))-α/β, from which all moments can 
be derived. For example E(M)=α/(1-β) and Var(M)=α/(1-β)2. The probabilities themselves are 
easily generated by taking advantage of the fact that x0=E(0M)=(1-β)α/β; the ratio formula then 
determines x1, x2, etc. This Katz class of distributions has sufficient flexibility to reasonably 
approximate most unimodal priors for M. 

Let M'=M-Y be the number of mines remain ng after sweepin , and suppose that sweeping is 
to the level p; i.e., every mine is independently removed with probability p. Let q=1-p. Then 

| | 0y jy + j
P(M = j Y = y)P(Y = y) = P(Y = y M = y + j)P(M = y + j) = ; j , p q x

′ ≥ (8) 

since P(Y=y|M=y+j) is the binomial probability of y successes out of y+j trials. Let 
P(M'=j|Y=y) be the posterior distribution of the number of mines remaining. Then, taking the 

ratio of successive terms in (8), 

L O L O
                    x / x =

(j + 1)
 q 

(y + j + 1)
                       j+1

*
j

*

NM QP NM QP  

The first [] factor is a ratio o

(y + j + 1) + (y + j)α β (9) 

f combinatorial coefficients, and the second is by assumption 
xy+j+1/xy+j. The two (y+j+1) factors cancel, so (9) is again a linear function of j divided by (j+1). 
Thus the posterior distribution xj

* is of the same Katz type as the prior distribution xj, except that 
                                                 
4 Here and throughout, E() denotes the expectation operator.  
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the revised param

  (10) 

s 

 posterior distribution still depends on p, of course, but not on y. 
Since the posterior distribution is in the same class as the prior, it can itself be revised by 

further sweeping in the same way, so on
second search, etc. The appeal of the class is that the effect of sweeping is a simple revision of 
two

c
prob

eters are 

α'=q(α+βy), β'=qβ.

Note that α'/β' will be an integer if α/β is, since α'/β'=α/β+y. The expected number of mine
remaining increases with y if β>0 or decreases with y if β<0; depending on the prior distribution, 
either of the above arguments about dependence on y may be dominant. The Poisson case where 
β=0 is on the boundary; the

e might have α'', β'' for the distribution following a 

 parameters. 
If each remaining mine will damage the first transitor with probability t, then the probability 

that the first transitor is not damaged is E((1-t)M), where M has whatever Katz distribution is 
haracteristic of the amount of sweeping that has been done. Substitute 1-t for z in the 

ability generating function to get 

 
/

1 (1 )t
α β

β
−
 − −( , , ) 1SIT g t

1 β− 

By substituting (α,β) values appropriate to the amount of sweeping that has been d
at any point can be determined. If β=0 β
α α= − −

α β= = −   (11) 

one, SIT 
, replace (11) by the limiting case for small : 

( ,0, ) 1 exp( )g t t . 
One could also use (11) to forecast the p of an 

(α,β minefield without
SIT associated with a given clearance level 

)  knowing the number of mines removed. Th
ount of sweeping to be done. The clearance level essentially reduces the threat of 

is forecast would be useful in 
planning the am
each mine from t to qt, so the forecast SIT before the number of swept mines is observed is 
SIT'=g(α,β,qt). In connection with planning it may be desirable to solve this for the q 
corresponding to a given SIT'. The solution is 

 

'

1

- /1 - (1- )(1 - SIT )1-
           p q                  

t

β αβ
β− = =  (12) 

For an example of the application of these ideas, suppose that initially α=4.5 and β=.1, 
nes is 4.5/(1-.1)=5. This 

ne threat is t=.1, then 
SIT=
to find q=.211. Sweeping m
removed in the process of sweeping to that level, then (using (10)) α'=.211(4.5+.1(10))=1.1605 
and β'=.211(.1)=.0211. This is the “posterior” distribution of Figure 5. The average number of 
min

which corresponds to a distribution where the mean number of mi
distribution is the one labeled “prior” in Figure 5. If the individual mi

(4.5,.1,.1)=.392. If it is desired to reduce SIT to .1 by sweeping, sub
ust therefore be to the level .789. If y=10 

g stitute SIT'=.1 in (12) 
mines are found and 

es remaining is 1.186, and SIT is g(1.1605,.0211,.1)=.1112. The effect of the sweeping and 
the observation of the number of mines swept has been to reduce SIT, albeit not to exactly .1. A 
reduction is not inevitable; since SIT increases with the number of mines swept when β>0. In 
any case, the observation of the new SIT may prompt further sweeping, etc. 
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Only an extreme form of the above calculations has ever actually been used to aid the 
decision about whether there has been enough sweeping. The extreme form has α=1 and β=1-ε, 
where ε is extremely small. In that case M has the geometric distribution characteristic of the 
number of failures before the first success in repeated trials where the success probability is ε, a 
“diffuse prior” that places nearly equal (and therefore very small) weight on every nonnegative 
integer. In practice β is simply set to 1 in calculating α' and β'. The diffuse pr

Figure 5:  Distributions before and after minesweeping.  

ior is a pessimistic 
assumption, since E(M) is nearly infinite and SIT is nearly 1. The diffuse prior apparently has no 
need nd β 

 mines of type i is independently 
Poisson with m i; The minefield 
is to be swept a n ate each 
rem

s 

 

 to make an initial assumption about the number of mines present, but only because α a
are built into the procedure instead of being a user input. 

5.2 Optimal minesweeping in mixed minefields. 
Minefields often consist of a mixture of mines of different types, partly because this forces 

the minesweeper to make repetitive passes with different sweep configurations.  With several 
different configurations available, the question of how fixed resources should be divided among 
them arises.  The answer, of course, depends on how much the sweeper knows about the mine 
populations.  For the moment,  assume that the number of

ean α that is, suppose that Katz parameter βi is zero in all cases. 
nd the  transited.  Assume that the first transitor will lethally actu

aining mine of type i with probability ti, so that z=α1t1+...+αmtm is the average number of 
mines lethally actuated if there is no minesweeping.  The aim of minesweeping is to reduce thi
number as much as possible, while not exceeding any of the resource constraints.  Since the 
number of remaining mines is itself a Poisson random variable, the probability that the number 
of lethal mines is zero is SIT=1-exp(-z), but z itself will do for an objective because SIT is an
increasing function of z. 
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Let xj be the number of sweeps in configuration j, and let Wij be the small probability w
which each mine of type i is removed by each sweep of type j.  The average number of times 

with which a mine of type  i is removed is then 
1

n

i ij j
j

y W x
=

≡∑ .  Since there are many attempts

removal, each of which succeeds with a small probability, we take the probability that the mine 
survives all attempts to remove it as exp(-y ), the Poisson probability of no removals.  Therefo
the o

ith 

 at 

i re 

1 1 1  

 which is to be minimized.   

es to the following optimization 
problem: 

1

; 1,...,

i i i
i

jk j kh x H k K

=

bjective function is reduced by minesweeping to the level  

z=α t exp(-y )+...+αmtmexp(-ym)  (13)

Let hjk be the amount of resource k consumed by one sweep of type j, and let there be Hk 
units of resource k available over the minesweeping period.  If there are K types of resource 
available, then the problem of selecting (x1,...xm) optimally reduc

minimize exp( )
m

t yα −∑

1

subject to ; 1,...,i ij j
j

n

y W x i m
=

= =∑
 

n

1

and 0; 1,..., .
j

jx j n
=

≥ =

This formulation depends for its simp

“Optsweep” of workbook MineWar.xls
resources to 7 sweep types to sweep 5 different types of m
experiment with it to see how the problem

The case where Katz parameter βi≠
since the probability that the first transitor surviv

≤ =∑

licity on the random search assumption, but any 
convex function relating clearance level to the decision variables would do as well.  Sheet 

 uses Excel’s Solver to solve the problem of allocating 4 
ine.  The reader may wish to 

 solution is sensitive to input data. 
0 can also be formulated as an optimization problem, 

es is still a product of factors raised to powers. 
App  one 

pected. Section 5 
deal  

There is a natural tendency for minefields to become less effective with time on account of 
sweeping and transits.  Ship counters are one possible tactic for reducing this tendency.  A mine 
on s

y 

ake the ideas clear, we will describe the planning 

endix B gives a GAMS formulation of such a problem that is otherwise the same as the
formulated on the “Optsweep” sheet (see exercise 10).  

6. Countered Minefield Planning. 
Section 4 deals with planning minefields when no countermeasures are ex
s with countering a minefield when no counter-countermeasures are expected. This section

deals with planning counter-countermeasures when countermeasures are expected. The reader 
who fears that this sequence might go on indefinitely can take some comfort in noting that there 
is only one more section after this one. 

hipcount j will detonate when actuated only if j=1; otherwise, each actuation will decrease j 
by 1 until finally the mine is finally “ripe” (j=1).  By mixing up the shipcounts of the mines, the 
minefield planner can achieve a minefield that is threatening for late transits, as well as for earl
ones.  The problem of determining the ideal mixture of shipcounts is a good candidate for a 
computerized tactical decision aid.  To m
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prob

eat 
the 

t every transitor actuates each mine independently with probability A, 
and 

 

mber 
of m nes act independently, then the chief’s probability of 

1 (1 ) ;1jxt ADP n N− = − ≤ ≤∏   (15) 

t 
ch of is the probability of surviving one mine.  A plot of tn versus n is 

som
 minimum of all the numbers 

xj must not sum to more than M.  Solutions can be 
ght think that there would have to be some mines on high initial shipcounts to 

 
may be to put all mines on shipcount 1.  It is only in 

situa ers, 

sign 

ing the 

 on the 
n spirit and tendencies to the simple optimization 

lem in detail for an artificial minefield with only one type of mine and one type of transit, 
later making reference to software (ACMPM) that can handle multiple mine types without the 
artificial assumptions. 

Suppose that transitors are all alike as far as actuating mines is concerned, but that one of N 
transitors (the “chief”) is more important than the others.  In fact, the sole object of the minefield 
planner is to threaten the chief regardless of where he appears in the sequence.  If tn is the thr
(probability of damage) to the nth transitor, let t be the smallest of all these numbers.  Since 
chief may be anywhere in the transit sequence, the object is to make t as large as possible by 
cleverly setting the counts of the mines. 

Suppose further tha
that the chief will be damaged with probability D, conditional on actuating a ripe mine.  A 

mine initially set on shipcount j will be ripe just before the nth transit if and only if the first n-1 
transits actuate it exactly j-1 times, a binomial probability.  If Pjn is this probability, then 

11
(1 ) ;1

1
j n j

jn

n
P A A j n N

j
− −− 

= − ≤ ≤ ≤ − 
  (14)

Note that P11=1, since the number of combinations of 0 things taken 0 at a time is by definition 
1.  If the chief is transitor n, he will be damaged by this mine if and only if it is ripe, and if the 
chief both actuates it and is damaged by it.  The probability of this is ADPjn.  If xj is the nu

ines set on shipcount j, and if all mi
surviving all mines is 

n

1
n jn

j=

The upper limit of the product in (15) is n because mines initially on shipcounts exceeding n 
cannot threaten the nth transitor.  If there are a total of M mines available, then (15) is a produc
of at most M factors, ea

etimes called a “threat profile”. 
We can now consider the problem

subject to the constraint that the variables 
surprising.  One mi

 of maximizing t, the tn, 

guard against the possibility that the chief is late in the sequence.  This is not generally true 
because A is generally considerably smaller than 1.  If A is .2, for example, it would not be 
unusual to have a mine initially on shipcount 10 still be on shipcount 8 after 10 transits.  If A is
small enough, in fact, the best tactic 

tions where actuation is likely, possibly because most transitors are actually minesweep
that advanced shipcounts become attractive.  Exercise 12 will give the reader a chance to 
experiment with this optimization problem. 

The Analytical Countered Minefield Planning Model (ACMPM) is a program used to de
countered minefields (Bronowitz and Fennemore, 1975) that avoids some of the artificial 
assumptions made above.  ACMPM calculates Pjn for every possible cross-channel location of 
the mine before finally averaging to obtain the quantity used in (15), thus correctly reflect
fact that mines don’t change locations between transits. ACMPM also deals with a variety of 
mine types simultaneously, and includes resource constraints other than simple constraints
number of mines.  Still, ACMPM is similar i
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desc

s 
ill be pointed out later, but they can sometimes be illuminating. The purpose of 

this sect e possibilities. 

HUNT). The 
miner employs exactly one mine, having his choice of either type. The minesweeper elects to 
sweep or hunt without knowing the miner’s choice, and the mine removal probability depends on 
the c irst 

e 

The solution of this game is that x*=(1/3,2/3,0) and y*=(1/3,2/3). x* is the sweeper’s 
optimal mixed strategy, with the three components being probabilities of choosing the three 
rows, and y* is defined similarly fo  the game is 1/3, the probability that 
the mine is removed. Note that MAG m
are more easily swept than ACU mi ore likely to do what he is bad at 

detection probability were raised fr rom exclusive 
swe lts are 

s. 

 

ribed above. 

7. Two Person Zero Sum (TPZS) Games. 
The measure/countermeasure cycle can be continued indefinitely, with each side thinking “If 

he thinks that I think that he thinks…” in trying to decide what to do next. TPZS games were 
invented to deal with that situation; they hold out the hope of basing actions on the enemy’s 
known capabilities, rather than his presumed intentions. TPZS formulations have some problem
of their own, as w

ion is not to be exhaustive, but merely to show some of th

7.1 Matrix games. 
Is it better to hunt for mines or to sweep them? Hunting has the advantage of working 

equally well regardless of the sensor type, mine count setting, or delay arming, since it is 
completely independent of the mine’s sensors. On the other hand hunting usually has a 
comparatively small sweep width. For a simple analysis suppose that there are only two mine 
types (MAG and ACU) and three possible countermeasures (SMAG, SACU, and 

hoices of both players. These six probabilities are shown in the matrix below. For the f
two countermeasures the matrix entry is an actuation probability (we are assuming no min
counters or delay arms, so actuation is equivalent to removal). For the HUNT countermeasure 
the matrix entry is the probability of detecting the mine, which is again equivalent to removal. 
The sweeper is the maximizing player, so his three strategies are by convention shown as rows 

 

    MAG ACU

SMAG 1.0 0.0

SACU 0.0 0.5

HUNT 0.3 0.3

  

r the miner. The value of
ines are used 1/3 of t

nes, that the sweeper is m
(SACU) than what he is good at (SMAG), and that the HUNT option is never used. If the HUNT 

om .3 to .35, the sweeper would switch f

he time in spite of the fact that they 

eping to exclusive hunting and the value of the game would be .35. Some of these resu
surprising, and it is hard to imagine discovering them by any means other than TPZS analysi
The practical problem with TPZS matrix analysis is usually in “scaling up” the solution to a 
problem with a practical number of alternatives. If the sweeper had three time periods available, 
for example, there would be 33=27 strategies available even if each time period could have only
a single type of activity. If each of 10 mines could be one of 3 types set on a count from 1 to 5, 
the miner would have (3x5)10 strategies available, a very large number. 

7.2 Concave-Convex games. 
It is common for a decision problem to be easy to solve with only a few alternatives, 
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complicated for combinatorial reasons as the number of alternatives is increased, and then easy 
again in the limit as the set of alternatives becomes a continuum. The problem considered in 
section 7.1 is like this. The number of strategies available to the minesweeper increases fast if 
the number of sweep/hunt opportunities is increased, or if devoting part of a period to one 
activity and part to another is permitted, or if there are multiple units available for 
sweeping/hunting. This rapid increase destroys any hope of a matrix game solution, but analysis 
may  of 

y3 

 still be possible. Suppose several identical units are present, let Y be the total number
unit-hours available during the time available for clearance, and suppose there are three 
sweeping/hunting activities. If yj is the number of unit-hours devoted to activity j, then y1+y2+
must not exceed Y for any feasible strategy. The continuum of alternatives is obtained by 
ignoring the scheduling details and concentrating entirely on this one constraint. 

Assume for the sake of example that the numbers in the table of section 7.1 rep
rates as in section 5.2, rather than probabilities, with Wji being the number in row j and column i. 
The average number of detections per mine of type i is zi≡W1iy1+W2iy2+W3iy3, and, assuming
again that search for mines is random, the probability of not

resent sweep 

 
 removing a mine of type i is

zi). Let xi be the probability that a mine is of type i and let x≡(x1,x2). Then the objective function 
is A(x,y)≡x1exp(-z1)+x

 exp(-

mizing 
iner, any three 

non

 

 in 

2exp(-z2), the fraction of mines not removed, with the x-player maxi
and the y-player minimizing. Any probability distribution x is a strategy for the m

negative numbers adding up to Y is a strategy for the sweeper, and A(x,y) determines the 
payoff. The advantage of this point of view is that A(x,y) is concave in x and convex in y, so the 
game has a saddle point (Owen, 1982). Since the game has a saddle point, the sweeper has an 
optimal strategy, and this strategy y will assure that the miner has no cheap victories. The best y
will therefore make the smallest of z1 and z2 as large as possible. Maximizing this minimum can 
be achieved with a small Linear Program (exercise 13); it turns out that Y should be split among 
the three tasks in the same proportions as y* of section 5.1. Thus if two units were available for 
24 hours each, Y would be 48 unit-hours and the game solution would be to spend 32 of them
ACU sweeps and the rest in MAG sweeps. No information about how the two units might be 
scheduled to achieve this is available; the game solution is a guide, rather than a detailed 
prescription.  

Considerable generalization is possible. If the sweeper had several linear constraints 
involving y, rather than just one, the game would be still be solvable by Linear Programming. In 
fact it is interesting that the problem of minimizing A(x,y) with x specified arbitrarily is a 
nonlinear program, whereas requiring that x be worst case (the game) is a simpler Linear 
Program. This is a rare instance where solving a game is simpler than solving the corresponding 
single-decision-maker optimization problem! 

The assumption of random search assures that A(x,y) is convex in y; any other assump
abou

tion 
The t minesweeping would do as well as long as it preserved the convexity of A(x,y) in y. 

game would be of a fundamentally more difficult type if A(x,y) lost that property, since it might 
not have a saddle point.  

The number of mines available need not be one. If M mines are available, then x1+x2 is 
simply required to be M and xi is interpreted as “average number of mines of type i used by the 
miner”. The number of types could also be increased without substantial computational penalty. 

 

 
 or 1 times is exp(-z1)+z1exp(-z1). This is not a convex function of z1, 

Generalization is more difficult in other directions. Suppose, for example, that type 3 mines
are introduced as MAG mines on mine count 2. The number of activations of a MAG mine is a 
Poisson random variable with mean z1 under the random search assumption, so the probability of
activating a MAG mine 0
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but there is an even more serious problem. Type 3 mines dominate MAG mines in the sense t
the nonclearance probability is larger no matter what y is, so the miner would never use MAG 
mines on count 1 if count 2 were available. The best mine count is the largest number possible, 

hat 

and 

 

tive in a practical sense, so one might wish to use 
some m a minefield as the objective function. 

It is  power: let the measure be the number of transitors 
dam

furthermore the best mine sensor would be none at all, since throwing the sensor away 
would surely prevent the mine from being swept! The problem is that the objective function 
“mine survival fraction” does not explicitly refer to the ultimate objective of mine warfare, 
which is to damage transitors. If optimizing mine counts or sensitivity settings is part of the 
miner’s decision problem, then nonsensical results will be obtained unless the objective function
is changed to reflect this ultimate objective.  

7.3 Alternate objectives. 
An obvious alternate objective would be SIT, the probability that the first transitor after 

sweeping is damaged. For example Washburn (1982) solved a game of this type where the 
optimal density of mines in the vicinity of a strait turned out to be nonuniform, becoming 
gradually smaller at distances far from the center of the constriction. But SIT confines 
applicability to situations where the number of transitors is small (one, to be precise). A 
minefield with a high SIT may still be ineffec

easure of the “staying power” of 
 easy enough to measure staying

aged out of infinitely many, rather than out of just one. The threat to every transitor is 
important with this measure, rather than just the threat to the first. Unfortunately, using this 
measure is essentially the same as using “mine survival fraction”, since damage is proporti
to the number of mines not cleared if there is no danger of running out of targets. This a
“fix” SIT results in the problem described at the end of section 7.2. 

The Navy’s “Breakthrough” model (Sutter (1983)) fixes both the number of transitors and 
the amount of time available for clearance, and uses the objective function “fra

onal 
ttempt to 

ction of mines 
that ity 

 

ecision making situation. 
Brea

 

 
 is 

 sink transitors”. The miner’s strategies include the mix of mine types and also a probabil
actuator setting β for each type. Making β=1 is not generally optimal because doing so makes 
the mines easy to sweep, and making β=0 is never optimal because even a mine that survives
clearance would not damage anything. Selecting the right value for β is nontrivial, especially 
when the sweeper’s options include both hunting, which is not affected by β, and sweeping, 
which is. The Breakthrough model is an analysis of this two-sided d

kthrough was originally intended as a mine clearance aid for use when dealing with a 
sophisticated miner, but it has actually enjoyed more use in force level studies where its ability
to evaluate the effectiveness of a mix of minesweeping assets is useful.  

What if the first transitor is damaged and the rest decide to detour around the minefield, go
somewhere else, or take the damage as evidence that further minesweeping is necessary? If so
the miner to be given credit for delaying the arrival of the transitors? Probably he should be, 
since delay is often acknowledged to be one purpose of mining in the first place, but how mu
credit? Such questions can often be “finessed” in one-sided models. UMPM, for example, 
provides the user with a “stopped penetrator distribution” (section 4) without saying exactly
what the user should make of it. This kind of finessing is not possible in a TPZS model, since th
objective function must be explicit and either side may take advantage of

ch 

 
e 

 any artificiality. Expect 
TPZS mine warfare analyses to continue to be occasional, rather than regular.  
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Exercises 
1.  Consider the ENWGS model of section 3. Suppose that M mines with action radius W/2 

remain in a minefield of area A at the beginning of the fixed time interval δ that ENWGS uses to 
advance time, and consider an arbitrary ship that will travel some length L in the minefield over 
δ. As explained above, in the stochastic mode ENWGS compares a random number to WL/A to 
decide whether the ship is damaged by each of the M mines, subtracting one from M if any mine 
is struck. ENWGS also has a “deterministic” mode in which no random numbers are employed, 
the idea being to avoid the vagaries associated with randomness and assure reproducibility of 
results. The simplest deterministic model would be to replace all random numbers by .5, the 
midpoint of the interval [0,1]. Explain why this won’t give satisfactory results, and suggest a 
better deterministic model. The principle should be that, since δ has no physical meaning and is 
chosen for reasons having nothing to do with the minefield, results should not depend strongly 
on what value happens to be chosen for δ. 

2.  The UMPM model of a minefield is equivalent to a Markov chain where the state is the 
number of ships remaining undamaged and where a transition corresponds to all of the remaining 
ships passing the next mine. Suppose that Rn

* is given by the ENWGS model with WL/A =.5, 
and that 2 ships attempt the transit of a minefield with 3 mines. Let x be a row vector storing the 
probabilities that 0, 1, or 2 ships remain undamaged, initially x=(0,0,1). What is the 3x3 
transition matrix, what is x after three transitions, and what is the casualty distribution when two 
ships attempt to transit the minefield? 

ans: x is (.656,.328,.016) after 3 transitions. The casualty distribution is just the reverse of x: 
(.016,.328,.656). 

3.  Consider revising UMPM so that there are ghost ships, as well as virgin ships, with ghost 
ships representing ships that have struck a mine, but which act like virgin ships as far as 
activating additional mines goes. When a ship activates a mine, the ship sinks with probability S, 
or else becomes/stays a ghost. Reconsider problem 2, but with S=.5. The state of the Markov 
chain will be (v,g), where v is the number of virgins (initially 2) and g is the number of ghosts 
(initially 0). You will need to consider transitions among six states: 20,10,11,00,01,02. Assume 
that Rv+g

* is the probability that the group of v+g unsunk ships will actuate a mine, and that each 
of the unsunk ships is equally likely to be the actuator. What is the 6x6 transition matrix, what 
are the state probabilities after 3 transitions, and what is the casualty distribution? Ghosts count 
as casualties.  ans: If the state probability vector x is initially (1,0,0,0,0,0) with the states ordered as stated 
above, then it is (.0156, .2476, .1362, .2647, .2446, .0923) after 3 transitions. The casualty 
distribution is (.0156, .3838, .6006) for 0, 1, and 2 casualties. The transition matrix is 

 

.2500 .3750 .3750 0 0 0

0 .5000 0 .2500 .2500 0

0 .1875 .4375 0 .1875 .1875

0 0 0 1.000 0 0

0 0 0 .500 .500 0

0 0 0 0 .3750 .6250

L

N

MMMMMMMM

O

Q

PPPPPPPP

  

4.  In section 4.3, a claim is made about the size of a confidence interval for REP=10,000 
replications. Verify it, and also give the size if REP=1000. 
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5.  Consider the extreme example of section 4.2, but this time suppose that there are n=10 
identical transitors and a single mine that is equally likely to be type 1 or type 2. What is the 
fully

 

t 

at is t=.1.  

tions 

e sensitivity of the sensor, as well as the “actuation prob” 
inpu

oth the average number of casualties and the threat to the last (tenth) transitor. 
 Can

e 
 

Show that the objective function Z is -ln(S) provided that the initial numbers of 
min

 c) 
why this is important. 

11.  The problem e actuation 
probability A B.  How must 
equations (14) and/or (15) be revised?

12.  Wo ents equations (14) and 
(15), and invites you to determ ber of mines.  
See if you can find the distribution that m  M=20, N=10, A=.4 
and D=0.3.  You ma
the best distribution if the requirement that the number of mines on each shipcount must be an 
inte  

 configured probability of a single casualty? What is UMPM’s probability?  
6.  Using the methods of section 5.1, find an example where the results of minesweeping 

could increase SIT from its initial value. 
7.  Suppose that the prior distribution of M is as in section 5.1 with parameters α and β, and

that sweeping is carried out in two stages. In stage i sweeping is carried out to level 1-qi and yi 
mines are removed from the minefield, i=1,2. One might determine the posterior distribution of 
the number of mines remaining by revising (α,β) twice, once for each sweep, or by arguing tha
the two sweeps together are equivalent to one sweep to the level 1-q1q2 that removes y1+y2 
mines. Show that both procedures give the same result. 

8.  Use sheet “Katz” of Excel workbook MineWar.xls to work this problem, if you have it 
available. Suppose that the prior distribution of mines is as in section 5.1 with parameters α=3 
and β=.75, and that the individual mine thre

 a) What is the initial SIT, and to what level must the minefield be swept to reduce 
SIT to the desired average level SIT'=.1? 

 b) If no mines are found, what is the post-sweep SIT, and what are the mean and 
standard deviation of the number of mines remaining?  The mean should be .286. 

9.  Sheet “UMPM” of Excel workbook MineWar.xls implements the UMPM calcula
against ten hypothetical transitors.  Imagine that you are designing a minefield, and that you can 
control the “scale” input by changing th

t, a number between 0 and 1 that represents the setting of a probability actuator.  You are 
concerned about b

 you find a choice of the two controllable parameters that makes both of these measures 
better?  If so, what are the parameters and the resulting measures? 

10.  Appendix B formulates the problem of maximizing the survival probability S of the first 
transitor through a minefield with no counter-countermeasures after sweeping. The transitor 
must survive 5 different mine types, each of which has its own Katz parameters. It uses the sam
random search assumption for each mine as in section 4.2, except that the coverage ratio for type
i mines is yi≡Wi1x1+…+Wimxm, where m is the number of sweep types (7 in the example). The 
decision variable xj is the number of hours of sweeping of type j, and Wij is a parameter 
measuring the efficiency of type j sweeping against type i mines.  

 a) 
es of the 5 types are independent random variables and that g(αi,βi,qiti) determines SIT for 

each mine type. 
 b) Run the program and report the optimal value of S. 

The objective function is a convex function of the decision variables. Explain 

 discussed in section 6 assumes that all transits have the sam
.  Suppose that the chief actually has a different actuation probability 

  
rksheet “ACMPM” of Excel workbook MineWar.xls implem

ine the best minecount distribution for a given num
aximizes the minimum threat when

y wish to take advantage of Excel’s Solver feature, which is set up to find 

ger is ignored.  You may also wish to experiment with smaller but more realistic values of A
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such as .1, in which case the benefits of advanced minecounts should be much smaller. 

rameters M and 
p. F

e modified instead. What is the modification? 

the 
bviously” the location of the mine 

shou

ult in a sinking probability of only .2 
agai st  uni

the mine that will always sink the transitor with 
prob b  1/3

not exceed 2 so there are 
only

 

i

ity that 

dam e n 

lver to find the optimal distribution of minesweeping and the resulting SIT.  The 
i ized ted to SHPMAG (ships 
a g m

hy SHPMAG is never used in the optimal sweeping plan is that each 
s.  

ut what is the associated sweeping plan? 

13.  Confirm that the solution of the game discussed in section 7.2 is y=(32,16,0) by 
formulating and solving a Linear Program where the smallest zi is maximized. 

14.  Suppose that the number of mines is a binomial random variable with pa
ormula (7) could be used to determine x(k) for k=0,...,n.  Argue that (7) is actually not 

required, since the inputs to UMPM can b
15.  Suppose that the number of mines M is a priori equally likely to be either 10 or 15, and 

that 7 mines are found in the process of sweeping to level .5. Use Bayes Theorem to find the 
probability that the original number of mines was 10, given the observed result. 

16.  Suppose that a single mine must be placed at x in the unit interval [0,1], while a 
transitor simultaneously selects a point y in the same interval in an attempt to pass safely by 
mine. The transitor will be sunk if and only if |x-y|≤.2. “O

ld be uniformly distributed over the interval and the game value is .4, since the mine can 
cover 40% of the interval. But not so fast… 

 a) Show that a clever choice of y would res
n  the form strategy. 
 b) Find a strategy for placing 
a ility  or more, regardless of y. Hint: The optimal distribution for x is discrete, not 

continuous. 
 c) Find a strategy for transiting (a distribution for y) that will result in being sunk 

with probability 1/3 or less, regardless of x.  
The moral of this story is that end effects are potentially important. 
17.  There are two mines, each of which must be assigned a “count” of 0, 1, or 2 by the 

miner, a total of 9 possible joint assignments (these counts would normally be referred to as 1, 2, 
and 3, but it is convenient for the moment to begin counting from 0). The sweeper can sweep 
each mine either 0, 1, or 2 times, but the total number of sweeps can

 six joint possibilities. The sweeper wins if and only if both sides select different numbers 
for both mines, so the payoff matrix is a 9x6 matrix of 0’s and 1’s. This TPZS game models a
situation where each mine is “ripe” only if its count is reduced to exactly 0 by sweeping, and 
where the sole transitor will encounter both mines. Solve the resulting 9 by 6 game. 

18.  Five sh ps transit a minefield of three mines. In terms of R1
*,…,R5

*, as given by (5), 
what is the probability that exactly two of the ships will be damaged? 

19.  Find a formula analogous to (4) for the probability of a wasted fire: the probabil
a mi x nne at distance  from the channel centerline of  ships will actuate without doing any 

ag .  20.  Sheet “Optsweep” of workbook MineWar.xls contains a formulation of the optimizatio
problem considered in section 5.2. 
 a) Use so
m nim  SIT should be .2148, and the number of hours devo
m kin agnetic sweeps) should be 0. 

b) The reason w
sweep requires 5 SHPHRS, and the SHPHRS resource is better spent on other sweep type
What would happen if that number were reduced from 5 to 3?  You should find that the 
minimized SIT decreases to .2022, b
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Solutions to Exercises 
1.   If δ is small, WL/A will be smaller than 0.5, and therefore no ship will ever be damaged, 

no m
 incremented by 

L w
hip 

mple 
dete

atter how many small intervals there are.  A better deterministic method might be to 
introduce a counter D for distance traveled.  The counter would start at 0 and be

hen the ship moves.  When the counter exceeds A/W, the offending ship is damaged, and the 
counter reset to 0.  Objections could also be made to the counter method; for example, no s
would ever be damaged if it traveled less than A/W in the minefield.  There really is no si

rministic equivalent to a Monte Carlo simulation. 

2.   The transition matrix is 
1 0 0
.5 .5 0P
 
 = .  The state vector x is (0.656
0 .75 .25
 
  

after 3 transitions. The casualty distribution is just the reverse of x: (0.016, 0.328, 0.656). 
 
3.   If the state vector x is initially (1,0,0

, 0.328, 0.016) 

,0,0,0) with the states ordered as stated in the 
prob m

6006) for 0, 1, and 2 casualties. The transition matrix is 

0 .5000 0 .2500 .2500 0

75 0 .1875 .1875
M P

P   

 
 is 

 within 
0.01

hich 
 for all x, since the mine is equally likely to be effective or not.  Therefore Rn* = 1−.5n, 

and 

min

7. ge 
para
stag  
y1+y

 

le , then it is (.0156, .2476, .1362, .2647, .2446, .0923) after 3 transitions. The casualty 
distribution is (.0156, .3838, .

 
0 .1875 .43MM P

.2500 .3750 .3750 0 0 0LM OP

0 0 0 1.000 0 0M P
0 0 0 .500 .500 0

0 0 0 0 .3750 .6250N
MMM Q

PPP

4.  The subject is “large sample confidence intervals for a population proportion”.   The 
halfwidth in general is zα/2(p(1−p)/n)1/2, where n is the number of trials and p is the true sample
proportion.  Since zα/2 is 1.96 when α=.05, and since p(1−p) cannot exceed 0.25, the halfwidth
approximately (1/n)1/2.  This is 0.01 when n = 10,000; i.e., to measure a proportion to

, one needs about 10,000 trials.  When n = 1,000, the halfwidth is .03. 
  
5.   The fully configured probability is 0.5, since there will be one casualty if and only if the 

mine is type 1 (effective).  The input to UMPM would have to be an actuation curve for w
A(x) = 0.5

UMPM’s probability for n = 10 mines will be 0.999.  
  
6.  If β > 0, then SIT increases with the number of mines found, so any example with lots of 
es found will suffice. 
 

  The first stage revised Katz parameters are α′=q1(α+βy1) and β′=q1β.  The second sta
meters are α′′=q2(α′+β′y2) and β′′=q2β′.  Substituting the first stage formulas into the second 
e, we find that the two stages together are equivalent to a single stage where q = q1q2 and
2 mines are removed. 
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8.  The answers to part a are 0.650 and 0.911.  The answers to part b are 0.028, 0.286, and 
0.555. 

 
9.  There are many ways of accomplishing this.  One is to change the scale from 30 to 40 

and the actuation probability from 1/3 to .3, in which case the average number of casualties 
increases from 3.59 to 3.85, while the threat to the last transitor increases from 0.135 to 0.140. 

 
10.  Given the definitions of Ai and Bi, (1-g(αi, βi, qiti)) is the same thing as (1 ) iA

iB −+ , each 
being the probability that the ship survives all mines of type i.  Given the definition of Z and the 
assumption of independence between mine types, the probability of surviving all mine types is 
S = exp(-Z). The optimized value of Z is 0.844, which corresponds to a simple initial threat of 
0.570.  Convexity is important because this is a nonlinear optimization problem, and convexity 
guarantees a unique solution.  

  
11.   Substitute B for A in equation (15), but make no changes in equation (14). 
 
12.   The best integer solution found so far makes the threat at least 0.3263 regardless of 

where the chief appears, with the number of mines on each setting being (4, 4, 0, 10, 2, …).  If 
you were able to intuit that solution, then congratulations to your intuition.  If you find a better 
solution, please notify the author.  If your solution isn’t even that good, and if you found it using 
Solver, then you have learned something about Solver. 

13.  (solution stated in problem) 
14.  The modification is to simply multiply d(x) by p and use M mines.  In effect, p is a 

reliability for each mine. 
 
15.  Let M be the number of mines and Y be the number that are found. The binomial 

probability of getting 7 successes out of 10 trials with success probability .5 is 
P(Y=7|M=10) = .117.  With 15 trials, the probability is P(Y=7|M=15) = 0.196.  Since the events 
M=10 and M=15 are equally likely, according to Bayes theorem, P(M=10|Y=7) = 0.374. 

 
16.  In part a, the transitor’s probability of being sunk is only 0.2 if it chooses either 

endpoint, as long as x is chosen uniformly.  In part b, x should be equally likely to be either 0.15, 
0.5, or 0.85.  That way every point y is within range of at least one mine location.  In part c, y 
should be equally likely to be either 0, 0.5, or 1.  That way no mine single mine location can 
cover two transitor locations.  The value of this continuous game is 1/3. 

 
17.  The payoff matrix of the 9x6 game is shown below, and the value is 2/3. 
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1 1 1 1 0 1
1

0 1 0 0 1 1

 
 

 

1 1 0 1 0
1 1 1 0 0 0
1 0 0 1 1 1
0 1 0 1 1 0
0 0 1 1 1 0
1 0 0 1 0 1

 
 
 
 
 
 
 
 
 

 

0 0 1 0 0 1 

second and third, so the answer is R * R * (1-R * ) + R * (1-R * ) R * + (1-R * )R * R *.  The 

 

 
18.   The two damaged ships will be either the first and second, the first and third, or the 

5 4 3 5 4 4 5 5 4
sam ilities. 

obability 
of no damage, given actuation.  

 
20.   When the num al 

num zed SIT decreases to 
.2022. 

 
 
 

e answer can be obtained with more effort by multiplying out the Markov chain probab
 
19.   The probability that the mine actuates, but does no damage, is 

{1-(1-A(x))n}{1-D(x)/A(x)}.  This is the product of the actuation probability and the pr

ber of SHPHRS per SHPMAG sweep is reduced to three, the optim
ber of SHPMAG sweeps increases form 0 to15.89, and the minimi
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APPENDIX A:  Monte Carlo Simulation to Measure Casualty Distribution C( ) 

set ship properties; I=1,…,n

start ship loop on I

J still alive?

start mine loop on J

end replication loop

C(K) = C(K)/REP; K=0,…,n

kill mine J

C(CAS) = C(CAS) + 1

output C(K); K=0,…,n

end

start replication loop

CAS = 0

n ships, M mines, REP replications

initialize C(K)=0; K=0,…,n

set mine properties; J=1,…,M

actuation?

damage?

end loop on J

end loop on I

CAS = CAS + 1

yes

yes

no

yes

no

no
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APPENDIX B:  GAMS Formulation of a Minesweeping Problem 

il 1994.  All values are arbitrary. 
PTION LIMROW=0,LIMCOL=0; 

ed***CNT=co
ntact,SLD=helicopter towed sled 

**SHMGAC=ship using both magnetic and acoustic sweeps 

 
 J sweep /SHPHNT, EODHNT, SHPMAG, HELMAG, SHMGAC, HELACU, HELCUT/ 

    ALPHA(I)  Katz parameter for each mine type 

       BOTPRS  6 

    BETA(I)   more Katz parameters 

       BOTPRS  .5 

    THREAT(I)  Unit threat per surviving mine 

       BOTACU  .01 

       TETCNT  .04/ 

        HELHRS  48 

DHRS  48/; 
ARAMETER A(I) derived Katz parameter; 

ER B(I) derived Katz parameter; 
      B(I)=BETA(I)*THREAT(I)/(1-BETA(I)); 

TABLE W(I,J)  sweep rate of column J versus row I     
      SHPHNT  EODHNT  SHPMAG  HELMAG  SHMGAC  HELACU  HELCUT 
   BOTMAG        .02              .01             .05             .10              .01            .00             .00 
   BOTACU         .02              .01             .00             .00              .01            .05             .00 

$ TITLE NONLINEAR PROGRAM FOR ALLOCATING RESOURCES TO 
MINESWEEPING 

*** By Al Washburn, Apr
O
***BOT=bottom,MAG=magnetic,ACU=acoustic,PRS=pressure,TET=tether

***SHP=ship,EOD=EOD team,HEL=helicopter,CUT=cable cutting 
*
SETS 
   I mine type  /BOTMAG, BOTACU, BOTPRS, TETMAG, TETCNT/
  
   K resource   /SHPHRS, HELHRS, EODHRS, SLDHRS/; 
PARAMETERS 
  
      /  BOTMAG 10 
         BOTACU  8 
  
         TETMAG  4 
         TETCNT  2/ 
  
      /  BOTMAG  .1 
         BOTACU  .3 
  
         TETMAG  .7 
         TETCNT  .9/ 
  
      /  BOTMAG  .02 
  
         BOTPRS  .02 
         TETMAG  .04 
  
      HRS(K)  clock hours available for resource k 
        / SHPHRS  80 
  
          EODHRS  100 
          SL
P
        A(I)=ALPHA(I)/BETA(I); 
PARAMET
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   BOTPRS         .02              .01             .00             .00              .00            .00             .00 
    TETMAG        .03             .00              .05            .10               .01            .00             .08

   TETCNT         .04             .00              .00            .00               .00            .00             .10; 
 
 
 
 
TABLE H(K,J) clock hours of resource k per hour on task of sweep j 
 

SHPHNT  EODHNT  SHPMAG  HELMAG  SHMGAC  HELACU  HELCUT 
   SHPHRS     4.0             1.0             5.0              0.0            16.0            0.0            0.0 
   HELHRS     0.0             0.0             0.0            12.0              0.0          12.0          14.0 
   EODHRS    1.0             4.0             0.0              0.0               0.0           0.0            1.0 
   SLDHRS     0.0             0.0             0.0              2.0               0.0           2.0            0.0; 
VARIABLES 
        X(J)  total hours on task for sweep type j 
        Q(I)  probability that a mine of type i will not be swept 
        Z     negative of the log of the initial transit survival probability; 
POSITIVE VARIABLE X; 
EQUATIONS 
        OBJ     define objective function 
        MINESURV(I)  define q(i) 
        RESOURCE(K)  enforce resource restrictions on clock hours; 
OBJ..          Z =E= SUM(I,A(I)*LOG(1+B(I)*Q(I))); 
MINESURV(I)..  Q(I)-EXP(-SUM(J,W(I,J)*X(J))) =E= 0; 
RESOURCE(K)..  SUM(J,H(K,J)*X(J)) =L= HRS(K); 
MODEL MINESWEEP /ALL/; 
OPTION NLP=MINOS5; 
SOLVE MINESWEEP USING NLP MINIMIZING Z; 
DISPLAY X.L; 
PARAMETER SIT simple initial threat; 
SIT = 1-exp(-Z.L); 
DISPLAY SIT; 
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